Rotational Invariance Using Gabor Convolution Neural Network and Color Space for Image Processing

Judy Gateri, R. Rimiru, Michael W. Kimwele
{"title":"Rotational Invariance Using Gabor Convolution Neural Network and Color Space for Image Processing","authors":"Judy Gateri, R. Rimiru, Michael W. Kimwele","doi":"10.4018/ijaci.323798","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) are deep learning methods that are utilized in image processing such as image classification and recognition. It has achieved excellent results in various sectors; however, it still lacks rotation invariant and spatial information. To establish whether two images are rotational versions of one other, one can rotate them exhaustively to see if they compare favorably at some angle. Due to the failure of current algorithms to rotate images and provide spatial information, the study proposes to transform color spaces and use the Gabor filter to address the issue. To gather spatial information, the HSV and CieLab color spaces are used, and Gabor is used to orient images at various orientation. The experiments show that HSV and CieLab color spaces and Gabor convolutional neural network (GCNN) improves image retrieval with an accuracy of 98.72% and 98.67% on the CIFAR-10 dataset.","PeriodicalId":51884,"journal":{"name":"International Journal of Ambient Computing and Intelligence","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ambient Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaci.323798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) are deep learning methods that are utilized in image processing such as image classification and recognition. It has achieved excellent results in various sectors; however, it still lacks rotation invariant and spatial information. To establish whether two images are rotational versions of one other, one can rotate them exhaustively to see if they compare favorably at some angle. Due to the failure of current algorithms to rotate images and provide spatial information, the study proposes to transform color spaces and use the Gabor filter to address the issue. To gather spatial information, the HSV and CieLab color spaces are used, and Gabor is used to orient images at various orientation. The experiments show that HSV and CieLab color spaces and Gabor convolutional neural network (GCNN) improves image retrieval with an accuracy of 98.72% and 98.67% on the CIFAR-10 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Gabor卷积神经网络和色彩空间的旋转不变性图像处理
卷积神经网络(cnn)是一种深度学习方法,用于图像分类和识别等图像处理。在各个领域都取得了优异的成绩;然而,它仍然缺乏旋转不变量和空间信息。为了确定两个图像是否是另一个图像的旋转版本,可以彻底旋转它们,看看它们在某个角度上是否比较有利。由于目前的算法无法旋转图像并提供空间信息,本研究提出变换颜色空间并使用Gabor滤波器来解决这一问题。为了收集空间信息,使用HSV和CieLab色彩空间,并使用Gabor在不同方向上定位图像。实验表明,HSV和CieLab色彩空间以及Gabor卷积神经网络(GCNN)在CIFAR-10数据集上的图像检索精度分别达到98.72%和98.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
30
期刊最新文献
Analysis of Home Furnishing Marketing Based on Internet of Things in the Intelligent Environment Management of New Automatic Ticket Vending Machine System in Urban Rail Transit Threat Attribution and Reasoning for Industrial Control System Asset A Blockchain-Based Security Model for Cloud Accounting Data Management and Optimization Methods of Music Audio-Visual Archives Resources Based on Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1