{"title":"Modeling of continuous synthesis of single-walled carbon nanotubes by RF induction thermal plasma","authors":"Kenn Su Kim, G. Soucy, A. Moradian, J. Mostaghimi","doi":"10.1109/PLASMA.2008.4590887","DOIUrl":null,"url":null,"abstract":"Numerical and experimental studies have been performed on the continuous synthesis of single-walled carbon nanotubes (SWNT) in an inductively coupled thermal plasma reactor, in order to get better understanding of the effects of process parameters (ex., plasma gas composition, feed rate, and plasma power) on the SWNT formation and to determine the optimal process environment most suitable for SWNT synthesis. In the numerical study, a self consistent numerical model, which consists of several sub-models (i.e., plasma generation, plasma-particle interaction, nucleation and transport of SWNT precursors, and chemical reaction), is developed to accurately simulate the SWNT synthesis process in the entire region of the induction plasma system. And then, a parametric study of various system and synthesis parameters was conducted experimentally to confirm validity of the numerical model. Base on the numerical and experimental results, the appropriate operating conditions of the RF induction plasma process are suggested for an effective synthesis of SWNT.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4590887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical and experimental studies have been performed on the continuous synthesis of single-walled carbon nanotubes (SWNT) in an inductively coupled thermal plasma reactor, in order to get better understanding of the effects of process parameters (ex., plasma gas composition, feed rate, and plasma power) on the SWNT formation and to determine the optimal process environment most suitable for SWNT synthesis. In the numerical study, a self consistent numerical model, which consists of several sub-models (i.e., plasma generation, plasma-particle interaction, nucleation and transport of SWNT precursors, and chemical reaction), is developed to accurately simulate the SWNT synthesis process in the entire region of the induction plasma system. And then, a parametric study of various system and synthesis parameters was conducted experimentally to confirm validity of the numerical model. Base on the numerical and experimental results, the appropriate operating conditions of the RF induction plasma process are suggested for an effective synthesis of SWNT.