E. Johansen, D. Fredheim, R. Volkers, Dag Almar Hansen, Christian Petersen
{"title":"Cost Effective, Digital, Fail-Safe Production Tree and Wellhead Actuator System","authors":"E. Johansen, D. Fredheim, R. Volkers, Dag Almar Hansen, Christian Petersen","doi":"10.4043/31240-ms","DOIUrl":null,"url":null,"abstract":"E&P companies are challenged with the cost-effective development of smaller and marginal fields, while ensuring safety for its crew and facing increasing regulatory requirements for further reducing emissions and environmental impact. Key enablers to achieve profitable development of smaller fields and maintaining safe production in remote locations is digitizing and automating the production chain and limit the need for on-site personnel. There are a number of safety critical valves on wellheads and production trees that have historically been manually or hydraulically operated and thus not suited for fully remote operations. In 2017, Equinor, Baker Hughes and TECHNI formed a Joint Industry Project (JIP) to develop a new electric actuator control system. The actuator system is designed for fail-safe, critical operations offshore and is subject to stringent safety design requirements. The key driver is reducing CAPEX and OPEX and environmental impact for offshore installations, while increasing availability of wells while providing improved monitoring and condition based, predictive maintenance. The electric actuator system developed in the JIP has a patent pending fail-safe mechanism with extremely fast closing time to ensure well containment during critical situations. It is designed to be a drop-in replacement for existing hydraulic actuator solutions and is suitable for most standard wellhead and tree designs, sizes, and pressure ratings. The all-electric solution contains a multitude of sensors, that, in combination with an integrated digital interface, enables data-driven insights from the systems in operation. The actuator development is currently at Technology Readiness Level (TRL) 4 on the API 17N, 0 to 7 scale. In 2020, the JIP consortium was awarded NOK 8.2 million (USD 950 000) by the Norwegian Research Council DEMO 2000 program to support the test and qualification program. TRL 5 testing is planned in first half of 2021 yielding it ready for field installation.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31240-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
E&P companies are challenged with the cost-effective development of smaller and marginal fields, while ensuring safety for its crew and facing increasing regulatory requirements for further reducing emissions and environmental impact. Key enablers to achieve profitable development of smaller fields and maintaining safe production in remote locations is digitizing and automating the production chain and limit the need for on-site personnel. There are a number of safety critical valves on wellheads and production trees that have historically been manually or hydraulically operated and thus not suited for fully remote operations. In 2017, Equinor, Baker Hughes and TECHNI formed a Joint Industry Project (JIP) to develop a new electric actuator control system. The actuator system is designed for fail-safe, critical operations offshore and is subject to stringent safety design requirements. The key driver is reducing CAPEX and OPEX and environmental impact for offshore installations, while increasing availability of wells while providing improved monitoring and condition based, predictive maintenance. The electric actuator system developed in the JIP has a patent pending fail-safe mechanism with extremely fast closing time to ensure well containment during critical situations. It is designed to be a drop-in replacement for existing hydraulic actuator solutions and is suitable for most standard wellhead and tree designs, sizes, and pressure ratings. The all-electric solution contains a multitude of sensors, that, in combination with an integrated digital interface, enables data-driven insights from the systems in operation. The actuator development is currently at Technology Readiness Level (TRL) 4 on the API 17N, 0 to 7 scale. In 2020, the JIP consortium was awarded NOK 8.2 million (USD 950 000) by the Norwegian Research Council DEMO 2000 program to support the test and qualification program. TRL 5 testing is planned in first half of 2021 yielding it ready for field installation.