First Principle Defect Analysis in 150 µm 4H-SiC Epitaxial Layer Schottky Barrier Detectors

Joshua W. Kleppinger, S. Chaudhuri, Omerfaruk Karadavut, K. Mandal
{"title":"First Principle Defect Analysis in 150 µm 4H-SiC Epitaxial Layer Schottky Barrier Detectors","authors":"Joshua W. Kleppinger, S. Chaudhuri, Omerfaruk Karadavut, K. Mandal","doi":"10.1109/NSS/MIC42677.2020.9507936","DOIUrl":null,"url":null,"abstract":"High resolution Schottky barrier detectors (SBDs) were fabricated on 150 µm thick 4H-SiC epilayers using a proprietary device design. Electrical properties of the SBD junctions were characterized by temperature-dependent current-voltage (I-V- T) measurements which showed ultra-low leakage current densities lower than 100 pA cm−2at -150 V and remained below 1 µ A.cm−2 even at 600K. Electrically active deep levels present in the epilayers were identified and characterized by deep level transient spectroscopy (DLTS) which showed the presence of three deep levels - Ti(c), Z1/2 and EH6/7- with low concentrations (~1011 cm−3). The energy levels were investigated theoretically by density functional theory (DFT) calculations on intrinsic vacancies and titanium point defects. Pulse height spectra (PHS) were collected using a 241Am alpha source and a percentage energy resolution of 0.55% at 5486 keV was obtained. Further analysis of the forward bias I-V- T showed an improvement in ideality factor and barrier height at elevated temperature revealing the improvement of detection performance at higher temperature.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High resolution Schottky barrier detectors (SBDs) were fabricated on 150 µm thick 4H-SiC epilayers using a proprietary device design. Electrical properties of the SBD junctions were characterized by temperature-dependent current-voltage (I-V- T) measurements which showed ultra-low leakage current densities lower than 100 pA cm−2at -150 V and remained below 1 µ A.cm−2 even at 600K. Electrically active deep levels present in the epilayers were identified and characterized by deep level transient spectroscopy (DLTS) which showed the presence of three deep levels - Ti(c), Z1/2 and EH6/7- with low concentrations (~1011 cm−3). The energy levels were investigated theoretically by density functional theory (DFT) calculations on intrinsic vacancies and titanium point defects. Pulse height spectra (PHS) were collected using a 241Am alpha source and a percentage energy resolution of 0.55% at 5486 keV was obtained. Further analysis of the forward bias I-V- T showed an improvement in ideality factor and barrier height at elevated temperature revealing the improvement of detection performance at higher temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
150µm 4H-SiC外延层肖特基势垒探测器的第一原理缺陷分析
采用专有器件设计,在150µm厚的4H-SiC薄膜上制备了高分辨率肖特基势垒探测器(sdd)。通过温度相关的电流-电压(I-V- T)测量表征了SBD结的电学特性,结果表明,在-150 V时,泄漏电流密度低于100 pA cm - 2,即使在600K时也保持在1µa cm - 2以下。利用深能级瞬态光谱(deep level transient spectroscopy, dts)对脱膜中存在的电活性能级进行了鉴定和表征,发现存在3个低浓度(~1011 cm−3)的深能级Ti(c)、Z1/2和EH6/7。利用密度泛函理论(DFT)计算了本征空位和钛点缺陷的能级。采用241Am α源采集了脉冲高度光谱(PHS),在5486 keV下获得了0.55%的百分比能量分辨率。进一步分析正向偏压I-V- T,发现理想因子和势垒高度在高温下有所提高,表明在高温下检测性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of Dual-Ended Readout PET Detectors Based on SiPMs with Different Microcell Sizes Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors An e-LINAC driven PGNAA system for concealed drug inspection Design of a Multi-Technology Pre-Clinical SPECT System Comprehensive Simulation and Design of 3D Silicon Sensors for Enhanced Timing Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1