{"title":"Removal of zinc ions as zinc chloride complexes from strongly acidic aqueous solutions by ionic exchange","authors":"Emilia Gîlcă, A. Măicăneanu, P. Ilea","doi":"10.2478/s11532-014-0504-8","DOIUrl":null,"url":null,"abstract":"The aim of this study was to compare several anion exchangers and to investigate the capacity of Amberlite IRA410 to remove zinc as chloride [ZnCl3]− from hydrochloric solutions (1 M). Influence of the process parameters such as stirring rate, resin quantity and zinc initial concentration over the removal process, was considered. The highest experimental ionic exchange capacity between the considered anionic exchangers, in the same working conditions (500 rpm, 5 g resin and 500 mg L−1), was obtained for Amberlite IRA410, 8.34 mg g−1. With an increase of zinc ions concentration, ionic exchange capacity increased up to 19.31 mg g−1 (1100 mg L−1). The experimental data were analysed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The results were also analyzed using sorption kinetics models, pseudo-first-, pseudo-second-order, intra-particle and film diffusion models. From the Dubinin-Radushkevich and Temkin isotherm models the mean free energy and heat of sorption were calculated to be 7.45 kJ mol−1, respectively 1×10−4 kJ mol−1, which indicates that zinc sorption is characterized by a physisorption process. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model.","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"29 1","pages":"821-828"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-014-0504-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The aim of this study was to compare several anion exchangers and to investigate the capacity of Amberlite IRA410 to remove zinc as chloride [ZnCl3]− from hydrochloric solutions (1 M). Influence of the process parameters such as stirring rate, resin quantity and zinc initial concentration over the removal process, was considered. The highest experimental ionic exchange capacity between the considered anionic exchangers, in the same working conditions (500 rpm, 5 g resin and 500 mg L−1), was obtained for Amberlite IRA410, 8.34 mg g−1. With an increase of zinc ions concentration, ionic exchange capacity increased up to 19.31 mg g−1 (1100 mg L−1). The experimental data were analysed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The results were also analyzed using sorption kinetics models, pseudo-first-, pseudo-second-order, intra-particle and film diffusion models. From the Dubinin-Radushkevich and Temkin isotherm models the mean free energy and heat of sorption were calculated to be 7.45 kJ mol−1, respectively 1×10−4 kJ mol−1, which indicates that zinc sorption is characterized by a physisorption process. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model.