Gate Voltage-Modulated Conductance in Zigzag Graphene Nanoribbon Junctions

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2023-08-25 DOI:10.1155/2023/6463744
Ming Li, Zhikang Feng, Zheng-Yin Zhao
{"title":"Gate Voltage-Modulated Conductance in Zigzag Graphene Nanoribbon Junctions","authors":"Ming Li, Zhikang Feng, Zheng-Yin Zhao","doi":"10.1155/2023/6463744","DOIUrl":null,"url":null,"abstract":"Using the Green’s function method, we study the modulation of the conductance in zigzag graphene nanoribbon (ZGNR) junctions by the gate voltages. As long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV) remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along EF-axis. It is found that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is forbidden, therefore, the width of the conductance gap increases first and then decreases as |ΔV| increases. The upper/lower edge states and conduction/valence subbands of ZGNR under higher/lower gate voltage (VH/VL) determine step positions of the conductance when EF >VH/EF < VL. But when VL ≤ EF ≤ VH, the conductance profile is mainly determined by the upper and lower edge states, a few lowest conduction subbands/topmost valence subbands of ZGNR under lower/higher gate voltage. These results are helpful to the exploration and application of a new kind of field effect transistor based on ZGNR junctions.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/6463744","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Using the Green’s function method, we study the modulation of the conductance in zigzag graphene nanoribbon (ZGNR) junctions by the gate voltages. As long as the difference between the gate voltages applied on the left and right ZGNRs (ΔV) remains unchanged, the conductance profiles for different cases are exactly the same, except to a displacement along EF-axis. It is found that the transmission of electrons from the upper/lower edge state of the left ZGNR to the lower/upper edge state of the right ZGNR is forbidden, therefore, the width of the conductance gap increases first and then decreases as |ΔV| increases. The upper/lower edge states and conduction/valence subbands of ZGNR under higher/lower gate voltage (VH/VL) determine step positions of the conductance when EF >VH/EF < VL. But when VL ≤ EF ≤ VH, the conductance profile is mainly determined by the upper and lower edge states, a few lowest conduction subbands/topmost valence subbands of ZGNR under lower/higher gate voltage. These results are helpful to the exploration and application of a new kind of field effect transistor based on ZGNR junctions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
之字形石墨烯纳米带结的栅极电压调制电导
利用格林函数方法,研究了栅极电压对之字形石墨烯纳米带(ZGNR)结电导的调制。只要施加在左右zgnr (ΔV)上的栅极电压之间的差保持不变,除了沿ef轴的位移外,不同情况下的电导曲线完全相同。发现电子从左ZGNR上/下边缘状态向右ZGNR下/上边缘状态的传输是被禁止的,因此,随着|ΔV|的增大,电导间隙宽度先增大后减小。当栅极电压>VH/EF < VL时,ZGNR在高/低栅极电压(VH/VL)下的上/下边缘状态和导价子带决定了电导的阶跃位置。而当VL≤EF≤VH时,电导分布主要由ZGNR在低/高栅极电压下的上、下边缘状态、几个最低导子带/最高价子带决定。这些结果对基于ZGNR结的新型场效应晶体管的探索和应用具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1