首页 > 最新文献

Advances in Condensed Matter Physics最新文献

英文 中文
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound 压力变化对硒化钇氢化合物的电子结构、声子和超导特性的影响
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-05-31 DOI: 10.1155/2024/8722867
Tadesse Bekele Aredo, Megersa Wodajo Shura, Mesfin Asfaw Afrassa, Kumneger Tadele, Fekadu Tolessa Maremi
The electronic, phonon, and superconducting properties of hexagonal yttrium hydrogen selenide (YHSe) are studied using density functional theory (DFT) methods. The DFT analysis revealed that the energy bandgap and density of states near the Fermi energy (ɛF) decrease with increasing pressure. Additionally, the influence of pressure on the vibrational properties of YHSe is also examined. The findings of the vibrational properties indicate a stiffening of lattice dynamics under pressure and the identification of negative Gruneisen parameters at certain high symmetry sites. This enhances and deepens the understanding of the vibrational characteristics of YHSe under extreme pressure conditions. Finally, the electron–phonon coupling (EPC) parameter (λ) is examined under different pressures. The examination of EPCs across varying pressures showed a significant increase from 0.826 (0 GPa) to 2.6287 (200 GPa), where an increase in this EPC is found to increase the superconducting critical temperature (Tc). Furthermore, the nonmonotonic relationship between the superconducting critical temperature (Tc) and external pressure (P) in the YHSe compound is observed. Initially, Tc decreases with increasing pressure and then begins to rise again, reaching its peak value at extreme pressure. These findings provide valuable insights into the pressure-dependent properties of YHSe and have important implications for the field of superconductivity in condensed matter physics.
利用密度泛函理论(DFT)方法研究了六方硒化钇(YHSe)的电子、声子和超导特性。DFT 分析表明,费米能(ɛF)附近的能带隙和状态密度随着压力的增加而减小。此外,还研究了压力对 YHSe 振动特性的影响。振动特性的研究结果表明,在压力作用下,晶格动力学变得更加坚硬,并在某些高对称性位点发现了负的格鲁尼森参数。这增强并加深了对极压条件下 YHSe 振动特性的理解。最后,研究了不同压力下的电子-声子耦合(EPC)参数(λ)。对不同压力下的 EPC 的研究表明,EPC 从 0.826(0 GPa)显著增加到 2.6287(200 GPa),EPC 的增加会提高超导临界温度 (Tc)。此外,还观察到 YHSe 化合物的超导临界温度 (Tc) 与外部压力 (P) 之间的非单调关系。起初,Tc 会随着压力的增加而降低,然后开始回升,并在极压下达到峰值。这些发现为了解 YHSe 随压力变化的特性提供了宝贵的见解,对凝聚态物理中的超导领域具有重要意义。
{"title":"The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound","authors":"Tadesse Bekele Aredo, Megersa Wodajo Shura, Mesfin Asfaw Afrassa, Kumneger Tadele, Fekadu Tolessa Maremi","doi":"10.1155/2024/8722867","DOIUrl":"https://doi.org/10.1155/2024/8722867","url":null,"abstract":"The electronic, phonon, and superconducting properties of hexagonal yttrium hydrogen selenide (YHSe) are studied using density functional theory (DFT) methods. The DFT analysis revealed that the energy bandgap and density of states near the Fermi energy (<i>ɛ</i><sub>F</sub>) decrease with increasing pressure. Additionally, the influence of pressure on the vibrational properties of YHSe is also examined. The findings of the vibrational properties indicate a stiffening of lattice dynamics under pressure and the identification of negative Gruneisen parameters at certain high symmetry sites. This enhances and deepens the understanding of the vibrational characteristics of YHSe under extreme pressure conditions. Finally, the electron–phonon coupling (EPC) parameter (<i>λ</i>) is examined under different pressures. The examination of EPCs across varying pressures showed a significant increase from 0.826 (0 GPa) to 2.6287 (200 GPa), where an increase in this EPC is found to increase the superconducting critical temperature (<i>T</i><sub>c</sub>). Furthermore, the nonmonotonic relationship between the superconducting critical temperature (<i>T</i><sub>c</sub>) and external pressure (<i>P</i>) in the YHSe compound is observed. Initially, <i>T</i><sub>c</sub> decreases with increasing pressure and then begins to rise again, reaching its peak value at extreme pressure. These findings provide valuable insights into the pressure-dependent properties of YHSe and have important implications for the field of superconductivity in condensed matter physics.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications 揭示黄铜矿结构中 AMY2(A = Cu、Ag;M = Sc、Ti、V、Cr、Mn、Fe;Y = S、Se)化合物的磁性和半金属特性:面向自旋电子应用的 Ab Initio 研究
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-05-20 DOI: 10.1155/2024/5630225
D. Vijayalakshmi, T. Ramachandran, G. Jaiganesh, G. Kalpana, Fathala Hamed
We present an investigation into the magnetism exhibited by AMY2 compounds characterized by a chalcopyrite structure, where A can be Cu or Ag, M can be Sc, Ti, V, Cr, Mn, or Fe, and Y can be either S or Se. By substituting M atoms at the Ga position of AGaY2 compounds, the magnetic properties were calculated using the full potential linearized augmented plane wave method under the generalized gradient approximation and local spin density approximation with the WIEN2K code. The obtained spin-polarized results confirmed the presence of ferromagnetic and half-metallic (HM) properties in AMY2 compounds (A = Cu, Ag; M = Ti, V, Cr, Mn; Y = S, Se), wherein the HM property is preserved through p-d hybridization of p states of Y (S, Se) atoms with d (t2g) states of M (M = Ti, V, Cr, Mn) atoms, and minimal contribution of −s states of A (A = Cu, Ag) atoms. The total magnetic moments for AMY2 compounds were calculated as 1.00, 2.00, 3.00, and 4.00 µB/f.u. for M = Ti, V, Cr, Mn, respectively. For AFeY2 compounds (A = Cu, Ag; Y = S, Se), electronic band structures for both up spin and down spin states were identical, suggesting antiferromagnetic behavior at equilibrium, while AScY2 compounds (A = Cu, Ag; Y = S, Se) exhibited nonmagnetic properties at equilibrium. Overall, the accurate HM properties of AMY2 materials suggest promising prospects for their utilization in spintronics and magnetic storage device applications.
我们介绍了对以黄铜矿结构为特征的 AMY2 化合物所表现出的磁性的研究,其中 A 可以是 Cu 或 Ag,M 可以是 Sc、Ti、V、Cr、Mn 或 Fe,Y 可以是 S 或 Se。通过在 AGaY2 化合物的 Ga 位置替换 M 原子,利用 WIEN2K 代码,在广义梯度近似和局部自旋密度近似条件下,使用全电势线性化增强平面波法计算了其磁性能。所获得的自旋极化结果证实了 AMY2 化合物(A = Cu、Ag;M = Ti、V、Cr、Mn;Y = S、Se)具有铁磁性和半金属(HM)特性,其中 HM 特性是通过 Y(S、Se)原子的 p 态与 M(M = Ti、V、Cr、Mn)原子的 d(t2g)态的 p-d 杂化以及 A(A = Cu、Ag)原子的 -s 态的最小贡献而保持的。根据计算,M = Ti、V、Cr、Mn 的 AMY2 化合物的总磁矩分别为 1.00、2.00、3.00 和 4.00 µB/f.u。对于 AFeY2 化合物(A = Cu、Ag;Y = S、Se),上自旋态和下旋态的电子能带结构完全相同,表明在平衡状态下存在反铁磁行为,而 AScY2 化合物(A = Cu、Ag;Y = S、Se)在平衡状态下表现出非磁性。总之,AMY2 材料精确的 HM 特性表明,它们在自旋电子学和磁性存储设备应用中大有可为。
{"title":"Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications","authors":"D. Vijayalakshmi, T. Ramachandran, G. Jaiganesh, G. Kalpana, Fathala Hamed","doi":"10.1155/2024/5630225","DOIUrl":"https://doi.org/10.1155/2024/5630225","url":null,"abstract":"We present an investigation into the magnetism exhibited by AMY2 compounds characterized by a chalcopyrite structure, where A can be Cu or Ag, M can be Sc, Ti, V, Cr, Mn, or Fe, and Y can be either S or Se. By substituting M atoms at the Ga position of AGaY2 compounds, the magnetic properties were calculated using the full potential linearized augmented plane wave method under the generalized gradient approximation and local spin density approximation with the WIEN2K code. The obtained spin-polarized results confirmed the presence of ferromagnetic and half-metallic (HM) properties in AMY2 compounds (A = Cu, Ag; M = Ti, V, Cr, Mn; Y = S, Se), wherein the HM property is preserved through p-d hybridization of p states of Y (S, Se) atoms with d (t2g) states of M (M = Ti, V, Cr, Mn) atoms, and minimal contribution of −s states of A (A = Cu, Ag) atoms. The total magnetic moments for AMY2 compounds were calculated as 1.00, 2.00, 3.00, and 4.00 µB/f.u. for M = Ti, V, Cr, Mn, respectively. For AFeY2 compounds (A = Cu, Ag; Y = S, Se), electronic band structures for both up spin and down spin states were identical, suggesting antiferromagnetic behavior at equilibrium, while AScY2 compounds (A = Cu, Ag; Y = S, Se) exhibited nonmagnetic properties at equilibrium. Overall, the accurate HM properties of AMY2 materials suggest promising prospects for their utilization in spintronics and magnetic storage device applications.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices 提高用于储能设备的沸石咪唑酸盐框架-8 的电化学稳定性的最佳 Fe2O3 掺杂比
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-05-07 DOI: 10.1155/2024/5134666
Sadem Alsaba, Meshari M. Aljohani, S. A. Al-Ghamdi, Abdulrhman M. Alsharari, M. Sadque, Taymour A. Hamdalla
This paper aims to discover a novel composite material that has great potential for manufacturing high-performance supercapacitors suitable for diverse applications, such as electric vehicles, portable electronics, and stationary energy storage systems. Zeolitic imidazolate framework-8 (ZIF-8) doped by different concentrations up to 5 wt.% of nanosized Fe2O3 have been prepared (ZIF-8/Fe2O3). The effect of doping ratio 1, 3, and 5 wt.% on the structural and electrochemical properties of ZIF-8/Fe2O3 has been investigated. The structural characterization has been carried out using TGA, BET, XRD, and FTIR. The XRD analysis revealed that the crystalline size of our sample increased by approximately 16% as a result of doping ZIF-8 with 5 wt.% of Fe2O3. The structural analysis of the doped samples revealed that the material exhibited enhanced thermal stability and porosity, with an increase of approximately 105 m2/g. The introduction of doped nanometal oxides improved the capacitance value of ZIF-8 by significantly increasing its surface area. Additionally, the electron transport efficiency within ZIF-8/5 wt.% Fe2O3/electrode is increased. The Nyquist plot decreases as the doping of Fe2O3 increases. This indicates a decrease in the charge transfer resistance at the electrode–electrolyte interface, which is desired in applications such as batteries, fuel cells, or electrochemical sensors where faster electron transfer is needed for improved performance.
本文旨在发现一种新型复合材料,这种材料具有制造高性能超级电容器的巨大潜力,适合电动汽车、便携式电子产品和固定式储能系统等多种应用。该研究制备了掺杂不同浓度(最高达 5 wt.%)纳米级 Fe2O3 的沸石咪唑酸框架-8(ZIF-8)(ZIF-8/Fe2O3)。研究了 1、3 和 5 wt.% 的掺杂比例对 ZIF-8/Fe2O3 结构和电化学特性的影响。采用 TGA、BET、XRD 和傅立叶变换红外光谱进行了结构表征。XRD 分析表明,在 ZIF-8 中掺入 5 wt.% 的 Fe2O3 后,样品的结晶尺寸增大了约 16%。对掺杂样品的结构分析表明,该材料的热稳定性和孔隙率都有所提高,增加了约 105 m2/g。引入掺杂纳米金属氧化物后,ZIF-8 的表面积显著增加,从而提高了电容值。此外,ZIF-8/5 wt.% Fe2O3/电极内的电子传输效率也有所提高。奈奎斯特图随着 Fe2O3 掺杂量的增加而减小。这表明电极-电解质界面上的电荷转移电阻减小,而这正是电池、燃料电池或电化学传感器等应用所需要的,因为在这些应用中需要更快的电子传输速度来提高性能。
{"title":"The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices","authors":"Sadem Alsaba, Meshari M. Aljohani, S. A. Al-Ghamdi, Abdulrhman M. Alsharari, M. Sadque, Taymour A. Hamdalla","doi":"10.1155/2024/5134666","DOIUrl":"https://doi.org/10.1155/2024/5134666","url":null,"abstract":"This paper aims to discover a novel composite material that has great potential for manufacturing high-performance supercapacitors suitable for diverse applications, such as electric vehicles, portable electronics, and stationary energy storage systems. Zeolitic imidazolate framework-8 (ZIF-8) doped by different concentrations up to 5 wt.% of nanosized Fe<sub>2</sub>O<sub>3</sub> have been prepared (ZIF-8/Fe<sub>2</sub>O<sub>3</sub>). The effect of doping ratio 1, 3, and 5 wt.% on the structural and electrochemical properties of ZIF-8/Fe<sub>2</sub>O<sub>3</sub> has been investigated. The structural characterization has been carried out using TGA, BET, XRD, and FTIR. The XRD analysis revealed that the crystalline size of our sample increased by approximately 16% as a result of doping ZIF-8 with 5 wt.% of Fe<sub>2</sub>O<sub>3</sub>. The structural analysis of the doped samples revealed that the material exhibited enhanced thermal stability and porosity, with an increase of approximately 105 m<sup>2</sup>/g. The introduction of doped nanometal oxides improved the capacitance value of ZIF-8 by significantly increasing its surface area. Additionally, the electron transport efficiency within ZIF-8/5 wt.% Fe<sub>2</sub>O<sub>3</sub>/electrode is increased. The Nyquist plot decreases as the doping of Fe<sub>2</sub>O<sub>3</sub> increases. This indicates a decrease in the charge transfer resistance at the electrode–electrolyte interface, which is desired in applications such as batteries, fuel cells, or electrochemical sensors where faster electron transfer is needed for improved performance.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties 金纳米材料尺寸相关介电函数对光学特性影响的计算研究
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-04-25 DOI: 10.1155/2024/8846112
Bawoke Mekuye, Rainer Höfer, Gedefaw Mebratie
The effect of size on the optical properties of gold nanomaterials has been studied using the theoretical Drude–Sommerfield model. The real and imaginary parts of the dielectric function of bulk as a function of wavelength due to free electron contribution and the real and imaginary parts of the dielectric function of nanogold materials as a function of wavelength due to free electron and bond electron contribution are calculated. The real and imaginary parts of the dielectric function of bulk as a function of wavelength due to the free electron contribution graph and The real and imaginary parts of the dielectric function of nanogold materials as a function of wavelength due to free electron and bond electron contributions are plotted. As we observed from the graphs, the real dielectric functions of both bulk and nanogold materials are inversely proportional to wavelength. The imaginary part of the dielectric function of bulk gold materials is independent of wavelength. At high wavelengths, the size of the gold nanomaterial is highly influenced by both real and imagined dielectric functions at high waves. As the wavelength increases, the effect of the size on the dielectric function also increases. The size-dependent dielectric function of nanomaterials is highly influenced by their optical properties and electrical structure.
利用德鲁德-索默菲尔德理论模型研究了尺寸对纳米金材料光学特性的影响。计算了自由电子贡献导致的块体介电函数随波长变化的实部和虚部,以及自由电子和键电子贡献导致的纳米金材料介电函数随波长变化的实部和虚部。绘制了块体介电函数的实部和虚部与自由电子贡献波长的函数关系图,以及纳米金材料介电函数的实部和虚部与自由电子和键电子贡献波长的函数关系图。从图中我们可以看出,体金和纳米金材料的介电函数实部与波长成反比。块状金材料介电函数的虚部与波长无关。在高波长下,纳米金材料的尺寸受高波实部介电函数和虚部介电函数的影响很大。随着波长的增加,尺寸对介电常数的影响也在增加。纳米材料随尺寸变化的介电常数受其光学特性和电气结构的影响很大。
{"title":"Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties","authors":"Bawoke Mekuye, Rainer Höfer, Gedefaw Mebratie","doi":"10.1155/2024/8846112","DOIUrl":"https://doi.org/10.1155/2024/8846112","url":null,"abstract":"The effect of size on the optical properties of gold nanomaterials has been studied using the theoretical Drude–Sommerfield model. The real and imaginary parts of the dielectric function of bulk as a function of wavelength due to free electron contribution and the real and imaginary parts of the dielectric function of nanogold materials as a function of wavelength due to free electron and bond electron contribution are calculated. The real and imaginary parts of the dielectric function of bulk as a function of wavelength due to the free electron contribution graph and The real and imaginary parts of the dielectric function of nanogold materials as a function of wavelength due to free electron and bond electron contributions are plotted. As we observed from the graphs, the real dielectric functions of both bulk and nanogold materials are inversely proportional to wavelength. The imaginary part of the dielectric function of bulk gold materials is independent of wavelength. At high wavelengths, the size of the gold nanomaterial is highly influenced by both real and imagined dielectric functions at high waves. As the wavelength increases, the effect of the size on the dielectric function also increases. The size-dependent dielectric function of nanomaterials is highly influenced by their optical properties and electrical structure.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State Eu(Cu1-xAgx)2Si2(0 ≤ x ≤ 1)的电子传输特性:引发中间价态的 Eu2+ ↔ Eu2.41+ 转变
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-04-04 DOI: 10.1155/2024/5127659
B. Kuzhel, B. Belan, R. Gladyshevskii, H. Noga, I. Shcherba, R. Serkiz
The article presents the results of studies of the chemical composition, crystal structure, lattice parameters, microstructure, the valence state of the europium ion (at 300 K), electrical resistivity, and differential thermopower (6–400 K) of samples in the Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1) substitutional solid solutions. A transition of the europium ion from the valence-stable state of Eu2+ in EuAg2Si2 to the state of intermediate (homogeneous) valence (IV) of the europium ion in EuCu2Si2 with an effective valence ϑeff = 2.41 (300 K) has been initiated by a successive replacement of silver atoms by copper atoms. With appropriate sample compositions, the transition passes through a Kondo-type state. The research subject is the patterns of transformations (when the composition of the sample changes), the electronic state, and, accordingly, the electronic transport properties. The simultaneous coexistence of europium ions in different electronic states is assumed. The substitutional solid solution Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1) exhibits properties related to the competition between the state of the Kondo system, intermediate valence (IV), and magnetic ordering.
文章介绍了对 Eu(Cu1 - xAgx)2Si2(0 ≤ x ≤ 1)置换固溶体样品的化学成分、晶体结构、晶格参数、微观结构、铕离子价态(300 K 时)、电阻率和差热功率(6-400 K)的研究结果。通过铜原子连续置换银原子,铕离子从EuAg2Si2中的Eu2+价稳态过渡到EuCu2Si2中有效价态ϑeff=2.41(300 K)的铕离子中间价态(IV)。在适当的样品成分下,转变会通过一个近藤型态。研究课题是转变模式(当样品成分发生变化时)、电子状态以及相应的电子传输特性。假定铕离子在不同的电子状态下同时共存。置换固溶体 Eu(Cu1 - xAgx)2Si2 (0 ≤ x ≤ 1)显示出与 Kondo 系统状态、中间价(IV)和磁有序之间的竞争有关的特性。
{"title":"Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State","authors":"B. Kuzhel, B. Belan, R. Gladyshevskii, H. Noga, I. Shcherba, R. Serkiz","doi":"10.1155/2024/5127659","DOIUrl":"https://doi.org/10.1155/2024/5127659","url":null,"abstract":"The article presents the results of studies of the chemical composition, crystal structure, lattice parameters, microstructure, the valence state of the europium ion (at 300 K), electrical resistivity, and differential thermopower (6–400 K) of samples in the Eu(Cu<sub>1 − <i>x</i></sub>Ag<sub><i>x</i></sub>)<sub>2</sub>Si<sub>2</sub> (0 ≤ <i>x</i> ≤ 1) substitutional solid solutions. A transition of the europium ion from the valence-stable state of Eu<sup>2+</sup> in EuAg<sub>2</sub>Si<sub>2</sub> to the state of intermediate (homogeneous) valence (IV) of the europium ion in EuCu<sub>2</sub>Si<sub>2</sub> with an effective valence <i>ϑ</i><sub>eff</sub> = 2.41 (300 K) has been initiated by a successive replacement of silver atoms by copper atoms. With appropriate sample compositions, the transition passes through a Kondo-type state. The research subject is the patterns of transformations (when the composition of the sample changes), the electronic state, and, accordingly, the electronic transport properties. The simultaneous coexistence of europium ions in different electronic states is assumed. The substitutional solid solution Eu(Cu<sub>1 − <i>x</i></sub>Ag<sub><i>x</i></sub>)<sub>2</sub>Si<sub>2</sub> (0 ≤ <i>x</i> ≤ 1) exhibits properties related to the competition between the state of the Kondo system, intermediate valence (IV), and magnetic ordering.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites 可调介电核对圆柱形核壳纳米复合材料光学双稳态性的影响
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-03-26 DOI: 10.1155/2024/9911970
Shewa Getachew
In this paper, the effect of a tunable dielectric core on local field enhancement, induced optical bistability, and the optical bistability domain in cylindrical core–shell nanoparticle composites are studied. The local field enhancement factor increases significantly at two resonant frequencies. The results demonstrate that the local field enhancement factor in the cylindrical core–shell nanoparticle increases when the natural attribute of the dielectric function of the dielectric core is varied by adding a dielectric function to it. Furthermore, we demonstrated that the magnitude of the imaginary part of the active dielectric core increases as the onset and offset input intensities increase. This indicates that the optical bistability or threshold width range widens as the imaginary part of the dielectric function of the dielectric core increases, thereby enlarging the threshold domain to improve system activation.
本文研究了可调介质内核对圆柱形核壳纳米粒子复合材料的局部场增强、诱导光学双稳态以及光学双稳态域的影响。在两个共振频率下,局部场增强因子显著增加。结果表明,当通过添加介电函数来改变介电核的介电函数自然属性时,圆柱核壳纳米粒子中的局部场增强因子会增加。此外,我们还证明,随着起始和偏移输入强度的增加,有源介电核的虚部幅度也会增加。这表明,随着介电芯介电函数虚部的增加,光学双稳态或阈值宽度范围也会扩大,从而扩大阈值域以改善系统激活。
{"title":"Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites","authors":"Shewa Getachew","doi":"10.1155/2024/9911970","DOIUrl":"https://doi.org/10.1155/2024/9911970","url":null,"abstract":"In this paper, the effect of a tunable dielectric core on local field enhancement, induced optical bistability, and the optical bistability domain in cylindrical core–shell nanoparticle composites are studied. The local field enhancement factor increases significantly at two resonant frequencies. The results demonstrate that the local field enhancement factor in the cylindrical core–shell nanoparticle increases when the natural attribute of the dielectric function of the dielectric core is varied by adding a dielectric function to it. Furthermore, we demonstrated that the magnitude of the imaginary part of the active dielectric core increases as the onset and offset input intensities increase. This indicates that the optical bistability or threshold width range widens as the imaginary part of the dielectric function of the dielectric core increases, thereby enlarging the threshold domain to improve system activation.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling 具有 f-f 电子耦合的安德森晶格哈密顿的经典变换
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-02-26 DOI: 10.1155/2024/7851286
Guang-Lin Zhao
In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.
这项研究为具有 f-f 电子耦合的安德森晶格哈密顿建立了一种新的规范变换,并进一步利用这种变换确定了一种新的近藤晶格哈密顿。与单杂质近藤效应不同,在二阶近似条件下,新的近藤晶格哈密顿只包括传导电子和 f 电子之间的自旋翻转散射过程,而非自旋翻转散射的正常过程在这个哈密顿中是不存在的。新的近藤晶格哈密顿可以用来研究一些近藤晶格金属间化合物的异常物理性质。
{"title":"A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling","authors":"Guang-Lin Zhao","doi":"10.1155/2024/7851286","DOIUrl":"https://doi.org/10.1155/2024/7851286","url":null,"abstract":"In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic, Elastic, Optical, and Thermodynamic Properties Study of Ytterbium Chalcogenides Using Density Functional Theory 利用密度泛函理论研究镱镓钙化物的电子、弹性、光学和热力学性质
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-02-23 DOI: 10.1155/2024/6646885
Lemessa Asefa Eressa, Zeleke Deressa Gerbi
In this study, the structural, electronic, optical, elastic, and thermodynamic properties of Ytterbium chalcogenides YbX (X = S, Se and Te) were computed within the first principles using generalized gradient approximation (GGA) as implemented in the pseudopotential plane wave approach. The equilibrium total energy for YbX (X = S, Se, and Te) was calculated as a function of the energy cutoff, k-point grid, and lattice parameter. An optimized lattice parameter of 5.6, 5.66, and 6.136 Å were calculated for YbS, YbSe, and YbTe, respectively. The energy band gaps of YbS, YbSe, and YbTe computed are 1.14, 1.32, and 1.48 eV, respectively. In addition, the low band gap (less than 3 eV) for ytterbium chalcogenides indicated that they may have potential applications in photovoltaic cells and laser diodes. Moreover, the negative dielectric function value for a certain frequency range indicates that these compounds are suitable for specific optical and microwave circuit applications. The result of elastic and thermodynamic property computation reveals that ytterbium chalcogenides are mechanically and thermodynamically stable, which can be useful in a variety of electronic device applications.
本研究采用伪势平面波方法中的广义梯度近似(GGA),在第一性原理内计算了镱铬合金 YbX(X = S、Se 和 Te)的结构、电子、光学、弹性和热力学性质。计算得出的 YbX(X = S、Se 和 Te)的平衡总能量是能量截止点、k 点网格和晶格参数的函数。计算得出 YbS、YbSe 和 YbTe 的优化晶格参数分别为 5.6、5.66 和 6.136 Å。计算得出的 YbS、YbSe 和 YbTe 的能带隙分别为 1.14、1.32 和 1.48 eV。此外,掺杂镱的低能带隙(小于 3 eV)表明它们在光伏电池和激光二极管中具有潜在的应用价值。此外,在一定频率范围内的负介电常数值表明,这些化合物适用于特定的光学和微波电路应用。弹性和热力学性质计算的结果表明,掺杂镱的钙镓化合物在机械和热力学上都很稳定,可用于各种电子设备。
{"title":"Electronic, Elastic, Optical, and Thermodynamic Properties Study of Ytterbium Chalcogenides Using Density Functional Theory","authors":"Lemessa Asefa Eressa, Zeleke Deressa Gerbi","doi":"10.1155/2024/6646885","DOIUrl":"https://doi.org/10.1155/2024/6646885","url":null,"abstract":"In this study, the structural, electronic, optical, elastic, and thermodynamic properties of Ytterbium chalcogenides Yb<i>X</i> (<i>X</i> = S, Se and Te) were computed within the first principles using generalized gradient approximation (GGA) as implemented in the pseudopotential plane wave approach. The equilibrium total energy for Yb<i>X</i> (<i>X</i> = S, Se, and Te) was calculated as a function of the energy cutoff, <i>k</i>-point grid, and lattice parameter. An optimized lattice parameter of 5.6, 5.66, and 6.136 Å were calculated for YbS, YbSe, and YbTe, respectively. The energy band gaps of YbS, YbSe, and YbTe computed are 1.14, 1.32, and 1.48 eV, respectively. In addition, the low band gap (less than 3 eV) for ytterbium chalcogenides indicated that they may have potential applications in photovoltaic cells and laser diodes. Moreover, the negative dielectric function value for a certain frequency range indicates that these compounds are suitable for specific optical and microwave circuit applications. The result of elastic and thermodynamic property computation reveals that ytterbium chalcogenides are mechanically and thermodynamically stable, which can be useful in a variety of electronic device applications.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement in the Electrocatalytic and Optoelectronic Performance of Cost-Effective Counter Electrode VO2 for Dye-Sensitized Solar Cell (DSSC) 提高染料敏化太阳能电池 (DSSC) 中成本效益型对电极 VO2 的电催化和光电性能
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-01-16 DOI: 10.1155/2024/6613380
Varsha Yadav, Rahul Bhatnagar, Upendra Kumar
Dye-sensitized solar cells (DSSCs) have garnered significant attention in the scientific community for more than two decades due to their cost-effectiveness, convenient manufacturability, little toxicity, and straightforward preparation methodology. In this study, we present a cost-effective alternative to the platinum electrode for DSSCs, which serves as the counter electrode. The utilization of vanadium oxide nanoparticles as counter electrodes (CEs) in DSSCs has been the subject of research due to its enhanced stability, cost-effectiveness, and favorable photovoltaic characteristics. The device has been fabricated in configuration of fluorine-doped tin oxide (FTO)||TiO2||ruthenium (II) dye (N719)||iodide—triiodide electrolyte||VO2 (counter electrode)||FTO and investigate their photovoltaic performance. The utilization of X-ray diffraction (XRD) analysis has provided insights into the crystalline properties of VO2, indicating that it exists in a crystalline phase with a crystalline size measuring 43.19 nm and a lattice strain of 1.68 × 10−3. The utilization of a field emission scanning electron microscope (FESEM) that is equipped with an energy dispersive X-ray spectrum reveals a dense microstructure characterized by a uniform distribution of vanadium (V) and oxygen (O) across the whole surface. The Raman spectroscopic examination of VO2 reveals the existence of many Raman bands, thereby confirming the presence of the monoclinic phase. Cyclic voltammetry measurements were employed to investigate the catalytic activity of the CE toward the electrolyte. The photovoltaic performance of the manufactured device was examined by I–V measurement, revealing a notable open circuit voltage (Voc) and efficient power conversion efficiency when compared to the other materials that were evaluated.
二十多年来,染料敏化太阳能电池(DSSCs)因其成本效益高、制造方便、毒性小和制备方法简单而备受科学界关注。在本研究中,我们提出了一种具有成本效益的 DSSC 铂电极替代品,即用作对电极的铂电极。在 DSSC 中使用氧化钒纳米粒子作为对电极(CE)一直是研究的主题,因为它具有更高的稳定性、成本效益和良好的光伏特性。本研究以氟掺杂氧化锡(FTO)||二氧化钛||钌(II)染料(N719)||碘化物-三碘化物电解质||二氧化钛(对电极)||FTO为构型制备了该装置,并对其光伏性能进行了研究。利用 X 射线衍射(XRD)分析深入了解了 VO2 的结晶特性,结果表明它存在于结晶相中,结晶尺寸为 43.19 纳米,晶格应变为 1.68 × 10-3。利用配备了能量色散 X 射线光谱的场发射扫描电子显微镜(FESEM)可以看到致密的微观结构,其特点是整个表面均匀分布着钒(V)和氧(O)。VO2 的拉曼光谱显示存在许多拉曼带,从而证实了单斜相的存在。循环伏安测量法用于研究 CE 对电解质的催化活性。通过 I-V 测量检验了制造出的设备的光伏性能,结果显示,与评估的其他材料相比,该设备具有显著的开路电压(Voc)和高效的功率转换效率。
{"title":"Enhancement in the Electrocatalytic and Optoelectronic Performance of Cost-Effective Counter Electrode VO2 for Dye-Sensitized Solar Cell (DSSC)","authors":"Varsha Yadav, Rahul Bhatnagar, Upendra Kumar","doi":"10.1155/2024/6613380","DOIUrl":"https://doi.org/10.1155/2024/6613380","url":null,"abstract":"Dye-sensitized solar cells (DSSCs) have garnered significant attention in the scientific community for more than two decades due to their cost-effectiveness, convenient manufacturability, little toxicity, and straightforward preparation methodology. In this study, we present a cost-effective alternative to the platinum electrode for DSSCs, which serves as the counter electrode. The utilization of vanadium oxide nanoparticles as counter electrodes (CEs) in DSSCs has been the subject of research due to its enhanced stability, cost-effectiveness, and favorable photovoltaic characteristics. The device has been fabricated in configuration of fluorine-doped tin oxide (FTO)||TiO<sub>2</sub>||ruthenium (II) dye (N719)||iodide—triiodide electrolyte||VO<sub>2</sub> (counter electrode)||FTO and investigate their photovoltaic performance. The utilization of X-ray diffraction (XRD) analysis has provided insights into the crystalline properties of VO<sub>2</sub>, indicating that it exists in a crystalline phase with a crystalline size measuring 43.19 nm and a lattice strain of 1.68 × 10<sup>−3</sup>. The utilization of a field emission scanning electron microscope (FESEM) that is equipped with an energy dispersive X-ray spectrum reveals a dense microstructure characterized by a uniform distribution of vanadium (V) and oxygen (O) across the whole surface. The Raman spectroscopic examination of VO<sub>2</sub> reveals the existence of many Raman bands, thereby confirming the presence of the monoclinic phase. Cyclic voltammetry measurements were employed to investigate the catalytic activity of the CE toward the electrolyte. The photovoltaic performance of the manufactured device was examined by I–V measurement, revealing a notable open circuit voltage (Voc) and efficient power conversion efficiency when compared to the other materials that were evaluated.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Oxygen Mixing Percentage on Mechanical and Microwave Dielectric Properties of SrBi4Ti4O15 Thin Films 氧气混合比例对 SrBi4Ti4O15 薄膜机械和微波介电性能的影响
IF 1.5 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-12 DOI: 10.1155/2023/8230336
A. Rambabu, K. C. James Raju, Polamarasetty P. Kumar, Ramakrishna S. S. Nuvvula, Baseem Khan
Aurivillus oxide thin films with nanostructures attained much interest due to their structural stability, outstanding ferroelectric, and dielectric properties. This manuscript reports the influence of oxygen mixing percentage (OMP) on structural, nanomechanical, and microwave dielectric properties of strontium bismuth titanate (SrBi4Ti4O15) thin films. SrBi4Ti4O15 films were successfully fabricated on fused silica substrates at room temperature, followed by annealed in a microwave furnace. The crystalline nature and purity of the phase was identified by X-ray diffraction. Nanomechanical properties of the SrBi4Ti4O15 films were studied using nanoindentation and nanoscratch tests. The best nanomechanical (hardness ∼6.9 GPa, Young’s modulus ∼120 GPa) properties were shown for films deposited around 50% of OMP. Microwave dielectric properties (dielectric constant and loss tangent at microwave frequencies 10 and 20 GHz) were extracted from the split postdielectric resonator technique.
具有纳米结构的金氧化物薄膜因其结构稳定、出色的铁电和介电特性而备受关注。本手稿报告了氧气混合比例(OMP)对钛酸锶铋(SrBi4Ti4O15)薄膜的结构、纳米力学和微波介电性能的影响。钛酸锶铋(SrBi4Ti4O15)薄膜是在室温下在熔融石英基底上成功制备的,然后在微波炉中退火。通过 X 射线衍射确定了该相的结晶性质和纯度。利用纳米压痕和纳米划痕测试研究了 SrBi4Ti4O15 薄膜的纳米力学性能。在 OMP 值 50% 左右沉积的薄膜具有最佳的纳米力学性能(硬度 ∼6.9 GPa,杨氏模量 ∼120 GPa)。微波介电性能(介电常数和微波频率为 10 和 20 GHz 时的损耗正切)是通过分离后介电谐振器技术提取的。
{"title":"Effect of Oxygen Mixing Percentage on Mechanical and Microwave Dielectric Properties of SrBi4Ti4O15 Thin Films","authors":"A. Rambabu, K. C. James Raju, Polamarasetty P. Kumar, Ramakrishna S. S. Nuvvula, Baseem Khan","doi":"10.1155/2023/8230336","DOIUrl":"https://doi.org/10.1155/2023/8230336","url":null,"abstract":"Aurivillus oxide thin films with nanostructures attained much interest due to their structural stability, outstanding ferroelectric, and dielectric properties. This manuscript reports the influence of oxygen mixing percentage (OMP) on structural, nanomechanical, and microwave dielectric properties of strontium bismuth titanate (SrBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub>) thin films. SrBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> films were successfully fabricated on fused silica substrates at room temperature, followed by annealed in a microwave furnace. The crystalline nature and purity of the phase was identified by X-ray diffraction. Nanomechanical properties of the SrBi<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> films were studied using nanoindentation and nanoscratch tests. The best nanomechanical (hardness ∼6.9 GPa, Young’s modulus ∼120 GPa) properties were shown for films deposited around 50% of OMP. Microwave dielectric properties (dielectric constant and loss tangent at microwave frequencies 10 and 20 GHz) were extracted from the split postdielectric resonator technique.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Condensed Matter Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1