Efficiency oriented design guidelines for a magnetohydrodynamic generator system

E. Cosoroaba, B. Fahimi
{"title":"Efficiency oriented design guidelines for a magnetohydrodynamic generator system","authors":"E. Cosoroaba, B. Fahimi","doi":"10.1109/IEMDC.2015.7409213","DOIUrl":null,"url":null,"abstract":"Magnetohydrodynamic power generation (MHDG) was a thriving field of research in the 1960s but low efficiency and difficulty to reach desired operating points (high temperature) discouraged the investment of further efforts in the matter. Nowadays technological advances such as superconducting electromagnets (with very low power consumption for higher overall efficiency), power electronics (to enable harvesting and processing of current intensive DC power for any application), and powerful multiphysics simulation software, call for a reassessment of this power generation method. The aim of this paper is to deliver a realistic analysis of the competitiveness of MHDG as well as the possibilities offered by design variables to improve its attributes. Finite element analysis offers an improved understanding of field and flow distribution as well as the power density generated within the fluid channel. Analytical energy efficiency determination is completed for two different fluids as well as a sensitivity study of influential design factors. Furthermore a power output/cost comparison between MHD-systems operating with combustion gasses and liquid copper is carried out to offer a complete assessment of MHDG.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"55 1","pages":"1197-1201"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetohydrodynamic power generation (MHDG) was a thriving field of research in the 1960s but low efficiency and difficulty to reach desired operating points (high temperature) discouraged the investment of further efforts in the matter. Nowadays technological advances such as superconducting electromagnets (with very low power consumption for higher overall efficiency), power electronics (to enable harvesting and processing of current intensive DC power for any application), and powerful multiphysics simulation software, call for a reassessment of this power generation method. The aim of this paper is to deliver a realistic analysis of the competitiveness of MHDG as well as the possibilities offered by design variables to improve its attributes. Finite element analysis offers an improved understanding of field and flow distribution as well as the power density generated within the fluid channel. Analytical energy efficiency determination is completed for two different fluids as well as a sensitivity study of influential design factors. Furthermore a power output/cost comparison between MHD-systems operating with combustion gasses and liquid copper is carried out to offer a complete assessment of MHDG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁流体动力发电机系统的效率导向设计准则
磁流体动力发电(MHDG)在20世纪60年代是一个蓬勃发展的研究领域,但低效率和难以达到理想的工作点(高温)阻碍了对该问题的进一步努力的投资。如今的技术进步,如超导电磁铁(以非常低的功耗获得更高的整体效率),电力电子(能够收集和处理任何应用的电流密集直流电源),以及强大的多物理场模拟软件,要求重新评估这种发电方法。本文的目的是提供MHDG竞争力的现实分析,以及设计变量提供的可能性,以改善其属性。有限元分析可以更好地理解流体通道内的场和流分布以及产生的功率密度。完成了两种不同流体的能量效率分析测定以及影响设计因素的灵敏度研究。此外,还对使用燃烧气体和液态铜的mhd系统进行了功率输出/成本比较,以对mhd系统进行全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Free vibration analysis of a large hydroelectric generator and computation of radial electromagnetic exciting forces Multi-objective optimization of an actively shielded superconducting field winding: Pole count study Brushless doubly-fed induction machines: Torque ripple A dynamic pole-phase modulation induction machine model Tri-port converter for flexible energy control of PV-fed electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1