Bayesian Nonparametric Graphical Models for Time-Varying Parameters VAR

Matteo Iacopini, L. Rossini
{"title":"Bayesian Nonparametric Graphical Models for Time-Varying Parameters VAR","authors":"Matteo Iacopini, L. Rossini","doi":"10.2139/ssrn.3400078","DOIUrl":null,"url":null,"abstract":"Over the last decade, big data have poured into econometrics, demanding new statistical methods for analysing high-dimensional data and complex non-linear relationships. A common approach for addressing dimensionality issues relies on the use of static graphical structures for extracting the most significant dependence interrelationships between the variables of interest. Recently, Bayesian nonparametric techniques have become popular for modelling complex phenomena in a flexible and efficient manner, but only few attempts have been made in econometrics. In this paper, we provide an innovative Bayesian nonparametric (BNP) time-varying graphical framework for making inference in high-dimensional time series. We include a Bayesian nonparametric dependent prior specification on the matrix of coefficients and the covariance matrix by mean of a Time-Series DPP as in Nieto-Barajas et al. (2012). Following Billio et al. (2019), our hierarchical prior overcomes over-parametrization and over-fitting issues by clustering the vector autoregressive (VAR) coefficients into groups and by shrinking the coefficients of each group toward a common location. Our BNP timevarying VAR model is based on a spike-and-slab construction coupled with dependent Dirichlet Process prior (DPP) and allows to: (i) infer time-varying Granger causality networks from time series; (ii) flexibly model and cluster non-zero time-varying coefficients; (iii) accommodate for potential non-linearities. In order to assess the performance of the model, we study the merits of our approach by considering a well-known macroeconomic dataset. Moreover, we check the robustness of the method by comparing two alternative specifications, with Dirac and diffuse spike prior distributions.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3400078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the last decade, big data have poured into econometrics, demanding new statistical methods for analysing high-dimensional data and complex non-linear relationships. A common approach for addressing dimensionality issues relies on the use of static graphical structures for extracting the most significant dependence interrelationships between the variables of interest. Recently, Bayesian nonparametric techniques have become popular for modelling complex phenomena in a flexible and efficient manner, but only few attempts have been made in econometrics. In this paper, we provide an innovative Bayesian nonparametric (BNP) time-varying graphical framework for making inference in high-dimensional time series. We include a Bayesian nonparametric dependent prior specification on the matrix of coefficients and the covariance matrix by mean of a Time-Series DPP as in Nieto-Barajas et al. (2012). Following Billio et al. (2019), our hierarchical prior overcomes over-parametrization and over-fitting issues by clustering the vector autoregressive (VAR) coefficients into groups and by shrinking the coefficients of each group toward a common location. Our BNP timevarying VAR model is based on a spike-and-slab construction coupled with dependent Dirichlet Process prior (DPP) and allows to: (i) infer time-varying Granger causality networks from time series; (ii) flexibly model and cluster non-zero time-varying coefficients; (iii) accommodate for potential non-linearities. In order to assess the performance of the model, we study the merits of our approach by considering a well-known macroeconomic dataset. Moreover, we check the robustness of the method by comparing two alternative specifications, with Dirac and diffuse spike prior distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变参数VAR的贝叶斯非参数图模型
在过去的十年里,大数据涌入计量经济学,需要新的统计方法来分析高维数据和复杂的非线性关系。解决维度问题的常用方法依赖于使用静态图形结构来提取感兴趣的变量之间最重要的依赖关系。近年来,贝叶斯非参数技术以一种灵活有效的方式对复杂现象进行建模已成为一种流行的方法,但在计量经济学中却很少进行尝试。本文提出了一种新颖的贝叶斯非参数时变图形框架,用于在高维时间序列中进行推理。在Nieto-Barajas等人(2012)的研究中,我们通过时间序列DPP均值在系数矩阵和协方差矩阵上包含贝叶斯非参数相关先验规范。继Billio等人(2019)之后,我们的分层先验通过将向量自回归(VAR)系数聚类并将每组系数缩小到一个共同位置来克服过度参数化和过度拟合问题。我们的BNP时变VAR模型是基于与相关的Dirichlet过程先验(DPP)相结合的尖峰-板结构,并允许:(i)从时间序列推断时变格兰杰因果关系网络;(ii)灵活建模和聚类非零时变系数;(iii)适应潜在的非线性。为了评估模型的性能,我们通过考虑一个众所周知的宏观经济数据集来研究我们的方法的优点。此外,我们通过比较狄拉克和扩散尖峰先验分布两种可选规范来检查该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Estimation of Pricing Kernels and Market-Implied Densities Futures-Trading Activity and Jump Risk: Evidence From the Bitcoin Market Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions Frequency Dependent Risk Spatial Heterogeneity in the Borrowers' Mortgage Termination Decision – a Nonparametric Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1