Deep visible and thermal image fusion for enhancement visibility for surveillance application

V. Voronin, M. Zhdanova, N. Gapon, A. Alepko, A. Zelensky, E. Semenishchev
{"title":"Deep visible and thermal image fusion for enhancement visibility for surveillance application","authors":"V. Voronin, M. Zhdanova, N. Gapon, A. Alepko, A. Zelensky, E. Semenishchev","doi":"10.1117/12.2641857","DOIUrl":null,"url":null,"abstract":"The additional sources of information (such as depth sensors, thermal sensors) allow to get more informative features and thus increase the reliability and stability of recognition. In this research, we focus on how to combine the multi-level deep fusion for visible and thermal information. We present the algorithm, combining information from visible cameras and thermal sensors based on the deep learning and parameterized model of logarithmic image processing (PLIP). The proposed neural network based on the principle of an autoencoder. We use an encoder to extract the features of images, and the fused image is obtained by a decoding network. The encoder consists of a convolutional layer and a dense block, which also consists of convolutional layers. Fusing images are in the decoder and the fusion layer operating to the principle of PLIP which close to the human visual system's perception. This fusion approach applied for surveillance application. Experimental results showed the effectiveness of the proposed algorithm.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"12 1","pages":"122710P - 122710P-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2641857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The additional sources of information (such as depth sensors, thermal sensors) allow to get more informative features and thus increase the reliability and stability of recognition. In this research, we focus on how to combine the multi-level deep fusion for visible and thermal information. We present the algorithm, combining information from visible cameras and thermal sensors based on the deep learning and parameterized model of logarithmic image processing (PLIP). The proposed neural network based on the principle of an autoencoder. We use an encoder to extract the features of images, and the fused image is obtained by a decoding network. The encoder consists of a convolutional layer and a dense block, which also consists of convolutional layers. Fusing images are in the decoder and the fusion layer operating to the principle of PLIP which close to the human visual system's perception. This fusion approach applied for surveillance application. Experimental results showed the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强监视应用可视性的深度可见图像和热图像融合
额外的信息来源(如深度传感器,热传感器)允许获得更多的信息特征,从而提高识别的可靠性和稳定性。在本研究中,我们重点研究了如何将可见光和热信息的多层次深度融合结合起来。我们提出了一种基于深度学习和对数图像处理(PLIP)参数化模型的算法,结合了可见光相机和热传感器的信息。提出了基于自编码器原理的神经网络。我们使用编码器提取图像的特征,并通过解码网络获得融合图像。编码器由卷积层和密集块组成,密集块也由卷积层组成。在解码器和融合层中,融合图像采用了接近人类视觉系统感知的PLIP原理。该融合方法适用于监控应用。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
9 weeks
期刊最新文献
Role of the private sector within Latvia’s strategic defence documents: Dimensions of psychological resilience and strategic communication Anti-terrorist cooperation as part of Poland’s geopolitical shift. “Operation Bridge” and the rise of a strategic partnership with the United States The role of military morale as an essential dimension of combat power Gender diversity management in NATO for sustainable security and peace SCADvanceXP—an intelligent Polish system for threat detection and monitoring of industrial networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1