{"title":"Artificial Immune System Driven Evolution in Swarm Chemistry","authors":"Nicola Capodieci, E. Hart, Giacomo Cabri","doi":"10.1109/SASO.2014.16","DOIUrl":null,"url":null,"abstract":"Morphogenetic engineering represents an interesting field in which models, frameworks and algorithms can be tested in order to study how self-* properties and emergent behaviours can arise in potentially complex and distributed systems. In this field, the morphogenetic model we will refer to is swarm chemistry, since a well known challenge in this dynamical process concerns discovering mechanisms for providing evolution within coalescing systems of particles. These systems consist in sets of moving particles able to self-organise in order to create shapes or geometrical formations that provide robustness towards external perturbations. We present a novel mechanism for providing evolutionary features in swarm chemistry that takes inspiration from artificial immune system literature, more specifically regarding idiotypic networks. Starting from a restricted set of chemical recipes, we show that the system evolves to new states, using an autonomous method of detecting new shapes and behaviours free from any human interaction.","PeriodicalId":6458,"journal":{"name":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"126 1","pages":"40-49"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2014.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Morphogenetic engineering represents an interesting field in which models, frameworks and algorithms can be tested in order to study how self-* properties and emergent behaviours can arise in potentially complex and distributed systems. In this field, the morphogenetic model we will refer to is swarm chemistry, since a well known challenge in this dynamical process concerns discovering mechanisms for providing evolution within coalescing systems of particles. These systems consist in sets of moving particles able to self-organise in order to create shapes or geometrical formations that provide robustness towards external perturbations. We present a novel mechanism for providing evolutionary features in swarm chemistry that takes inspiration from artificial immune system literature, more specifically regarding idiotypic networks. Starting from a restricted set of chemical recipes, we show that the system evolves to new states, using an autonomous method of detecting new shapes and behaviours free from any human interaction.