{"title":"A Hybrid Energy Storage System for Dual-Motor Driven Electric Vehicles","authors":"Zhongyue Zou, Jun Xu, Fan-ming Zeng, X. Mei","doi":"10.12783/dteees/iceee2019/31795","DOIUrl":null,"url":null,"abstract":"To satisfy the high power requirements for accelerating, climbing or running at high speeds, dualmotor driven electric vehicle (EV) is becoming more and more popular. To reduce the high-power influence to the battery life, a hybrid energy storage system (HESS) for dual-motor driven EV is proposed in this paper. Compared with conventional HESS, the proposed method is suitable for dual-motor driven EV, by the additional ultra-capacitor (UC). Different modes of the HESS are able to be realized, and the overall efficiency can be optimized. Moreover, no DC/DC converter is needed in this method, and the cost and the control complexity are reduced. The topology of the HESS is firstly proposed and the working principle is analyzed. The simulation is established to validate the proposed method.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To satisfy the high power requirements for accelerating, climbing or running at high speeds, dualmotor driven electric vehicle (EV) is becoming more and more popular. To reduce the high-power influence to the battery life, a hybrid energy storage system (HESS) for dual-motor driven EV is proposed in this paper. Compared with conventional HESS, the proposed method is suitable for dual-motor driven EV, by the additional ultra-capacitor (UC). Different modes of the HESS are able to be realized, and the overall efficiency can be optimized. Moreover, no DC/DC converter is needed in this method, and the cost and the control complexity are reduced. The topology of the HESS is firstly proposed and the working principle is analyzed. The simulation is established to validate the proposed method.