SILT: a memory-efficient, high-performance key-value store

Hyeontaek Lim, Bin Fan, D. Andersen, M. Kaminsky
{"title":"SILT: a memory-efficient, high-performance key-value store","authors":"Hyeontaek Lim, Bin Fan, D. Andersen, M. Kaminsky","doi":"10.1145/2043556.2043558","DOIUrl":null,"url":null,"abstract":"SILT (Small Index Large Table) is a memory-efficient, high-performance key-value store system based on flash storage that scales to serve billions of key-value items on a single node. It requires only 0.7 bytes of DRAM per entry and retrieves key/value pairs using on average 1.01 flash reads each. SILT combines new algorithmic and systems techniques to balance the use of memory, storage, and computation. Our contributions include: (1) the design of three basic key-value stores each with a different emphasis on memory-efficiency and write-friendliness; (2) synthesis of the basic key-value stores to build a SILT key-value store system; and (3) an analytical model for tuning system parameters carefully to meet the needs of different workloads. SILT requires one to two orders of magnitude less memory to provide comparable throughput to current high-performance key-value systems on a commodity desktop system with flash storage.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"330","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 330

Abstract

SILT (Small Index Large Table) is a memory-efficient, high-performance key-value store system based on flash storage that scales to serve billions of key-value items on a single node. It requires only 0.7 bytes of DRAM per entry and retrieves key/value pairs using on average 1.01 flash reads each. SILT combines new algorithmic and systems techniques to balance the use of memory, storage, and computation. Our contributions include: (1) the design of three basic key-value stores each with a different emphasis on memory-efficiency and write-friendliness; (2) synthesis of the basic key-value stores to build a SILT key-value store system; and (3) an analytical model for tuning system parameters carefully to meet the needs of different workloads. SILT requires one to two orders of magnitude less memory to provide comparable throughput to current high-performance key-value systems on a commodity desktop system with flash storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淤泥:一个内存高效,高性能的键值存储
淤泥(Small Index Large Table)是一种内存高效、高性能的键值存储系统,基于flash存储,可扩展到在单个节点上服务数十亿个键值项。它每个条目只需要0.7字节的DRAM,并且每次平均使用1.01次闪存读取来检索键/值对。淤泥结合了新的算法和系统技术来平衡内存、存储和计算的使用。我们的贡献包括:(1)设计了三个基本的键值存储,每个存储对内存效率和写友好性的强调不同;(2)综合基本键值存储,构建一个淤泥键值存储系统;(3)建立分析模型,对系统参数进行精心调整,以满足不同工作负载的需要。淤泥需要少一到两个数量级的内存,以提供与当前具有闪存的商用桌面系统上的高性能键值系统相当的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1