{"title":"Application of Wireless Communication in Experimental Research of the Interface Bonding Condition between Asphalt Layers by Tensile Testing","authors":"Huaijun Yin, Daming Wang, Jianwei Zou, Y. Zhu","doi":"10.1155/2021/2488947","DOIUrl":null,"url":null,"abstract":"The vigorous development of communication technology, especially the development of wireless network communication technology, has accelerated its informatization process in more and more industrial applications. In the field of monitoring and detection applications, the many advantages of wireless network transmission technology provide an important reference for high-quality compaction monitoring. Engineering practice shows that the construction technology of asphalt pavement is the ultimate guarantee of engineering quality. It is important to recognize that pavement performance is greatly influenced by interface bonding condition and interface failure can reduce the serviceability of pavements rather than their overall structural lifetime. This paper presents a laboratory test to investigate the bonding tensile performance between asphalt layers by tensile testing. The test methods and devices for determining the bond regarding tensile testing are summarized as follows. Different interface conditions have been analyzed herein: 0.2, 0.4, and 0.6 kg/m2 with corresponding emulsified asphalt (MA) and SBS-modified MA. It is found that the stress-strain relationship of tensile testing for interface bonding is similar with low-carbon steels and it can be categorized into four zones. The results of tensile strength and damage displacement are discussed which are key parameters in describing the interface bonding condition and evaluating pavement performance.","PeriodicalId":23995,"journal":{"name":"Wirel. Commun. Mob. Comput.","volume":"117 1","pages":"2488947:1-2488947:5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Commun. Mob. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/2488947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The vigorous development of communication technology, especially the development of wireless network communication technology, has accelerated its informatization process in more and more industrial applications. In the field of monitoring and detection applications, the many advantages of wireless network transmission technology provide an important reference for high-quality compaction monitoring. Engineering practice shows that the construction technology of asphalt pavement is the ultimate guarantee of engineering quality. It is important to recognize that pavement performance is greatly influenced by interface bonding condition and interface failure can reduce the serviceability of pavements rather than their overall structural lifetime. This paper presents a laboratory test to investigate the bonding tensile performance between asphalt layers by tensile testing. The test methods and devices for determining the bond regarding tensile testing are summarized as follows. Different interface conditions have been analyzed herein: 0.2, 0.4, and 0.6 kg/m2 with corresponding emulsified asphalt (MA) and SBS-modified MA. It is found that the stress-strain relationship of tensile testing for interface bonding is similar with low-carbon steels and it can be categorized into four zones. The results of tensile strength and damage displacement are discussed which are key parameters in describing the interface bonding condition and evaluating pavement performance.