C SVM Classification and KNN Techniques for Cyber Crime Detection

K. Veena, K. Meena, Yuvaraja Teekaraman, Ramya Kuppusamy, A. Radhakrishnan
{"title":"C SVM Classification and KNN Techniques for Cyber Crime Detection","authors":"K. Veena, K. Meena, Yuvaraja Teekaraman, Ramya Kuppusamy, A. Radhakrishnan","doi":"10.1155/2022/3640017","DOIUrl":null,"url":null,"abstract":"In the digital age, cybercrime is spreading its root widely. Internet evolution has turned out to a boon as well as curse for those confronting the issues of privacy, national security, social decency, IP rights, child protection, fighting, detecting, and prosecuting cybercrime. Hence, there arises a need to detect the cybercriminal. Cybercrime identification utilizes dataset that is taken from CBS open dataset. For identifying the cybercriminal, support vector machine (SVM) in the \n \n C\n \n SVM classification and \n \n K\n \n -nearest neighbor (KNN) models is utilized for determining the cybercrime information. The evaluation of the performance is done taking the following metrics into consideration: true positive, false positive, true negative and false negative, false alarm rate, detection rate, accuracy, recall, precision, specificity, sensitivity, classification rate, and Fowlkes-Mallows Scores. Expectation maximization (EM) calculation is utilized for evaluating the presentation of the Gaussian mixture model. The performance of classifier’s presentation is also done. Accuracy is accomplished in the event of grouping by means of SVM classifier as 89% in the supervised method.","PeriodicalId":23995,"journal":{"name":"Wirel. Commun. Mob. Comput.","volume":"21 1","pages":"3640017:1-3640017:9"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Commun. Mob. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3640017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the digital age, cybercrime is spreading its root widely. Internet evolution has turned out to a boon as well as curse for those confronting the issues of privacy, national security, social decency, IP rights, child protection, fighting, detecting, and prosecuting cybercrime. Hence, there arises a need to detect the cybercriminal. Cybercrime identification utilizes dataset that is taken from CBS open dataset. For identifying the cybercriminal, support vector machine (SVM) in the C SVM classification and K -nearest neighbor (KNN) models is utilized for determining the cybercrime information. The evaluation of the performance is done taking the following metrics into consideration: true positive, false positive, true negative and false negative, false alarm rate, detection rate, accuracy, recall, precision, specificity, sensitivity, classification rate, and Fowlkes-Mallows Scores. Expectation maximization (EM) calculation is utilized for evaluating the presentation of the Gaussian mixture model. The performance of classifier’s presentation is also done. Accuracy is accomplished in the event of grouping by means of SVM classifier as 89% in the supervised method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C支持向量机分类和KNN技术用于网络犯罪检测
在数字时代,网络犯罪正在广泛蔓延。对于那些面临隐私、国家安全、社会尊严、知识产权、儿童保护、打击、侦查和起诉网络犯罪等问题的人来说,互联网的发展既是一种福音,也是一种诅咒。因此,有必要检测网络罪犯。网络犯罪识别利用的数据集取自CBS开放数据集。为了识别网络犯罪分子,使用C支持向量机分类和K最近邻(KNN)模型中的支持向量机(SVM)确定网络犯罪信息。对性能的评估考虑了以下指标:真阳性,假阳性,真阴性和假阴性,假报警率,检出率,准确性,召回率,精密度,特异性,敏感性,分类率和Fowlkes-Mallows评分。期望最大化(EM)计算用于评价高斯混合模型的表现性。并对分类器的呈现性能进行了分析。在监督方法中,SVM分类器在分组时的准确率达到89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI-Empowered Propagation Prediction and Optimization for Reconfigurable Wireless Networks C SVM Classification and KNN Techniques for Cyber Crime Detection A Secure and Efficient Energy Trading Model Using Blockchain for a 5G-Deployed Smart Community Fusion Deep Learning and Machine Learning for Heterogeneous Military Entity Recognition Influence of Embedded Microprocessor Wireless Communication and Computer Vision in Wushu Competition Referees' Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1