Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-01-25 DOI:10.1088/2631-7990/acb626
Seo Ju Kim, Deokyoon Woo, Donguk Kim, Tae-kyeong Lee, Jaeyeob Lee, Wonyoung Lee
{"title":"Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells","authors":"Seo Ju Kim, Deokyoon Woo, Donguk Kim, Tae-kyeong Lee, Jaeyeob Lee, Wonyoung Lee","doi":"10.1088/2631-7990/acb626","DOIUrl":null,"url":null,"abstract":"Sluggish oxygen reduction reaction (ORR) kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells (IT-SOFCs). In particular, engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance. We developed the yttria-stabilized zirconia (YSZ) nanofiber (NF)-based composite cathode, where the oxygen vacancy concentration is controlled by varying the dopant cation (Y2O3) ratio in the YSZ NFs. The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm−2 at 700 and 600 °C, respectively, with excellent thermal stability at 700 °C over 500 h under 1.0 A cm−2. Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte. Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"72 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acb626","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Sluggish oxygen reduction reaction (ORR) kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells (IT-SOFCs). In particular, engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance. We developed the yttria-stabilized zirconia (YSZ) nanofiber (NF)-based composite cathode, where the oxygen vacancy concentration is controlled by varying the dopant cation (Y2O3) ratio in the YSZ NFs. The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm−2 at 700 and 600 °C, respectively, with excellent thermal stability at 700 °C over 500 h under 1.0 A cm−2. Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte. Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中温固体氧化物燃料电池用电纺纳米纤维复合阴极的界面工程
缓慢的氧还原反应(ORR)动力学是发展中温固体氧化物燃料电池(it - sofc)的主要障碍。特别是,在阴极和电解质之间的界面上设计阴离子缺陷浓度对于促进ORR动力学从而提高电化学性能非常重要。我们开发了钇稳定氧化锆(YSZ)纳米纤维(NF)基复合阴极,其中氧空位浓度通过改变YSZ纳米纤维中掺杂阳离子(Y2O3)的比例来控制。优化后的氧空位浓度复合阴极在700℃和600℃时的最大功率密度分别为2.66和1.51 W cm−2,在1.0 A cm−2下,在700℃、500 h内具有优异的热稳定性。电化学阻抗谱和弛豫时间分布分析表明,高氧空位浓度有利于阴极与电解质界面发生电荷转移和掺入反应。我们的研究结果表明,界面工程在实现具有更高性能和稳定性的it - sofc方面具有很高的可行性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1