Conditional scale function estimate in the presence of unknown conditional quantile function

P. Mwita, R. Otieno
{"title":"Conditional scale function estimate in the presence of unknown conditional quantile function","authors":"P. Mwita, R. Otieno","doi":"10.4314/AJST.V6I1.55165","DOIUrl":null,"url":null,"abstract":"Standard approach for modeling and understanding the variability of statistical data or, generally, dependant data, is often based on the mean variance regression models. However, the assumptions employed on standardized residuals may be too restrictive, in particular, when the data follows heavy-tailed distribution with probably infinite variance. This paper considers the problem of nonparametric estimation of conditional scale function of time series, based on quantile regression methodology of Koenker and Bassett (1978). We use a flexible model introduced in Mwita (2003), that makes no moment assumptions, and discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function. We finally prove the consistency and asymptotic normality for the estimate. Key word and phrases. Conditional quantile, kernel estimate, quantile autoregression, ARCH, QARCH, time series, consistency, asymptotic normality, value-at-risk.","PeriodicalId":7641,"journal":{"name":"African Journal of Science and Technology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/AJST.V6I1.55165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Standard approach for modeling and understanding the variability of statistical data or, generally, dependant data, is often based on the mean variance regression models. However, the assumptions employed on standardized residuals may be too restrictive, in particular, when the data follows heavy-tailed distribution with probably infinite variance. This paper considers the problem of nonparametric estimation of conditional scale function of time series, based on quantile regression methodology of Koenker and Bassett (1978). We use a flexible model introduced in Mwita (2003), that makes no moment assumptions, and discuss an estimate which we get by inverting a kernel estimate of the conditional distribution function. We finally prove the consistency and asymptotic normality for the estimate. Key word and phrases. Conditional quantile, kernel estimate, quantile autoregression, ARCH, QARCH, time series, consistency, asymptotic normality, value-at-risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在未知条件分位数函数时的条件标度函数估计
建模和理解统计数据或相关数据的可变性的标准方法通常是基于平均方差回归模型。然而,对标准化残差所采用的假设可能过于严格,特别是当数据遵循可能具有无限方差的重尾分布时。本文基于Koenker和Bassett(1978)的分位数回归方法,研究了时间序列条件尺度函数的非参数估计问题。我们使用Mwita(2003)中引入的灵活模型,该模型不做矩假设,并讨论了我们通过反转条件分布函数的核估计得到的估计。最后证明了估计的相合性和渐近正态性。关键词和短语。条件分位数,核估计,分位数自回归,ARCH, QARCH,时间序列,一致性,渐近正态性,风险值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering geological assessment of some lateritic soils in Ibadan, south-western Nigeria using bivariate and regression analyses Tabu search heuristic for university course timetabling problem THE INFLUENCE OF PH AND ADSORBENT CONCENTRATION ON ADSORPTION OF LEAD AND ZINC ON A NATURAL GOETHITE Conditional scale function estimate in the presence of unknown conditional quantile function DETERMINATION DE LA QUALITÉ DU PAIN DE SUCRE A PARTIR DES CONCENTRATIONS DES SUCRES REDUCTEURS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1