Online payload identification for quadruped robots

G. Tournois, Michele Focchi, A. Prete, Romeo Orsolino, D. Caldwell, C. Semini
{"title":"Online payload identification for quadruped robots","authors":"G. Tournois, Michele Focchi, A. Prete, Romeo Orsolino, D. Caldwell, C. Semini","doi":"10.1109/IROS.2017.8206367","DOIUrl":null,"url":null,"abstract":"The identification of inertial parameters is crucial to achieve high-performance model-based control of legged robots. The inertial parameters of the legs are typically not altered during expeditions and therefore are best identified offline. On the other hand, the trunk parameters depend on the modules mounted on the robot, like a motor to provide the hydraulic power, or different sets of cameras for perception. This motivates the use of recursive approaches to identify online mass and the position of the Center of Mass (CoM) of the robot trunk, when a payload change occurs. We propose two such approaches and analyze their robustness in simulation. Furthermore, experimental trials on our 80-kg quadruped robot HyQ show the applicability of our strategies during locomotion to cope with large payload changes that would otherwise severely compromise the balance of the robot.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"20 1","pages":"4889-4896"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The identification of inertial parameters is crucial to achieve high-performance model-based control of legged robots. The inertial parameters of the legs are typically not altered during expeditions and therefore are best identified offline. On the other hand, the trunk parameters depend on the modules mounted on the robot, like a motor to provide the hydraulic power, or different sets of cameras for perception. This motivates the use of recursive approaches to identify online mass and the position of the Center of Mass (CoM) of the robot trunk, when a payload change occurs. We propose two such approaches and analyze their robustness in simulation. Furthermore, experimental trials on our 80-kg quadruped robot HyQ show the applicability of our strategies during locomotion to cope with large payload changes that would otherwise severely compromise the balance of the robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四足机器人在线载荷识别
惯性参数的辨识是实现足式机器人高性能模型控制的关键。在探险过程中,腿的惯性参数通常不会改变,因此最好离线识别。另一方面,主干参数取决于安装在机器人上的模块,比如提供液压动力的马达,或者不同的感知摄像头。这促使使用递归方法来识别在线质量和机器人主干的质量中心(CoM)的位置,当有效载荷发生变化时。我们提出了两种方法,并在仿真中分析了它们的鲁棒性。此外,我们在80公斤重的四足机器人HyQ上进行的实验试验表明,我们的策略在运动过程中适用于应对大载荷变化,否则会严重损害机器人的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1