{"title":"Soft Subdivision Motion Planning for Complex Planar Robots","authors":"Bo Zhou, Yi-Jen Chiang, C. Yap","doi":"10.4230/LIPIcs.ESA.2018.73","DOIUrl":null,"url":null,"abstract":"The design and implementation of theoretically-sound robot motion planning algorithms is challenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft predicates for collision detection. The design of soft predicates is a balancing act between easily implementable predicates and their accuracy/effectivity.\nIn this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex geometry. We exploit the remarkable decomposability property of soft collision-detection predicates of such robots. We introduce a general technique to produce such a decomposition. If the robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the O(m^3) complexity known for exact planners. It follows that we can now routinely produce soft predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots within the general Soft Subdivision Search (SSS) framework. This is a significant advancement in the theory of sound and complete planners for planar robots.\nWe implemented such decomposed predicates in our open-source Core Library. The experiments show that our algorithms are effective, perform in real time on non-trivial environments, and can outperform many sampling-based methods.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"38 1","pages":"101683"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ESA.2018.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The design and implementation of theoretically-sound robot motion planning algorithms is challenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft predicates for collision detection. The design of soft predicates is a balancing act between easily implementable predicates and their accuracy/effectivity.
In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex geometry. We exploit the remarkable decomposability property of soft collision-detection predicates of such robots. We introduce a general technique to produce such a decomposition. If the robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the O(m^3) complexity known for exact planners. It follows that we can now routinely produce soft predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots within the general Soft Subdivision Search (SSS) framework. This is a significant advancement in the theory of sound and complete planners for planar robots.
We implemented such decomposed predicates in our open-source Core Library. The experiments show that our algorithms are effective, perform in real time on non-trivial environments, and can outperform many sampling-based methods.