Linear-Time Approximation Scheme for k-Means Clustering of Axis-Parallel Affine Subspaces

K. Cho, Eunjin Oh
{"title":"Linear-Time Approximation Scheme for k-Means Clustering of Axis-Parallel Affine Subspaces","authors":"K. Cho, Eunjin Oh","doi":"10.4230/LIPIcs.ISAAC.2021.46","DOIUrl":null,"url":null,"abstract":"In this paper, we present a linear-time approximation scheme for k -means clustering of incomplete data points in d -dimensional Euclidean space. An incomplete data point with ∆ > 0 unspecified entries is represented as an axis-parallel affine subspace of dimension ∆. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k -means clustering of axis-parallel affine subspaces of dimension ∆ that yields an (1+ ϵ )-approximate solution in O ( nd ) time. The constants hidden behind O ( · ) depend only on ∆ , ϵ and k . This improves the O ( n 2 d )-time algorithm by Eiben et al. [SODA’21] by a factor of n .","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"1 1","pages":"101981"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2021.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a linear-time approximation scheme for k -means clustering of incomplete data points in d -dimensional Euclidean space. An incomplete data point with ∆ > 0 unspecified entries is represented as an axis-parallel affine subspace of dimension ∆. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k -means clustering of axis-parallel affine subspaces of dimension ∆ that yields an (1+ ϵ )-approximate solution in O ( nd ) time. The constants hidden behind O ( · ) depend only on ∆ , ϵ and k . This improves the O ( n 2 d )-time algorithm by Eiben et al. [SODA’21] by a factor of n .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴平行仿射子空间k-均值聚类的线性时间逼近格式
本文给出了d维欧几里德空间中不完备数据点k -均值聚类的线性时间逼近格式。具有∆> 0个未指定条目的不完整数据点表示为维数∆的轴平行仿射子空间。两个不完全数据点之间的距离定义为数据点对应的轴平行仿射子空间中最近的两个点之间的欧氏距离。我们提出了一种用于维数为∆的轴平行仿射子空间的k -均值聚类的算法,该算法在O (nd)时间内产生(1+ λ)-近似解。隐藏在O(·)后面的常数只取决于∆、ε和k。这将Eiben等人[SODA ' 21]的O (n2d)时间算法提高了n倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Reverse Shortest Paths in Geometric Proximity Graphs Algorithms for Radius-Optimally Augmenting Trees in a Metric Space Augmenting Graphs to Minimize the Radius Linear-Time Approximation Scheme for k-Means Clustering of Axis-Parallel Affine Subspaces Intersecting Disks Using Two Congruent Disks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1