Synthesis and antimicrobial studies of nano-copper doped carbon substrates; activated carbon, reduced graphene oxide, and carbon nanofiber

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2022-09-30 DOI:10.55713/jmmm.v32i3.1270
Songwuit Chanthee, Jenjira Jirasangthong, Channarong Asasvatesanupap, M. Santikunaporn
{"title":"Synthesis and antimicrobial studies of nano-copper doped carbon substrates; activated carbon, reduced graphene oxide, and carbon nanofiber","authors":"Songwuit Chanthee, Jenjira Jirasangthong, Channarong Asasvatesanupap, M. Santikunaporn","doi":"10.55713/jmmm.v32i3.1270","DOIUrl":null,"url":null,"abstract":"Copper oxides (CuxO) have received considerable attention as a result of their biological activity. Nanoparticles (NPs) of CuxO attached to different substrates exhibit a wide spectrum of antimicrobial activity against bacteria and viruses, with similar properties to silver. The antimicrobial activity of CuxO-NPs doped on distinctive carbon materials was investigated for three carbon substrates: apricot stone activated carbon (AAC), reduced graphene oxide (rGO) and carbon nanofiber (CNF). The CuxO-NPs (5 wt%) doped AAC and rGO substrates were prepared by impregnation of copper nitrate followed by a thermal treatment process, while a similar weight of CuxO-NPs doped CNF was fabricated by electrospinning copper nitrate with polyacrylonitrile precursor, followed by carbonization. The CuxO species and chemical functions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. Surface morphology was measured using scanning electron microscopy. The antimicrobial activities of the substrates were evaluated by inhibition zone measurement of Staphylococcus aureus and Escherichia coli. The results demonstrated significant inhibition distances for different carbon substrates. Interestingly, CuxO-NPs doped over both AAC and rGO surfaces revealed clear zones against bacteria, whereas the inhibition zone was not recorded for CuxO-NPs doped over a CNF substrate. Various parameters such as carbon substrates, particle size, and copper oxide species were investigated.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i3.1270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Copper oxides (CuxO) have received considerable attention as a result of their biological activity. Nanoparticles (NPs) of CuxO attached to different substrates exhibit a wide spectrum of antimicrobial activity against bacteria and viruses, with similar properties to silver. The antimicrobial activity of CuxO-NPs doped on distinctive carbon materials was investigated for three carbon substrates: apricot stone activated carbon (AAC), reduced graphene oxide (rGO) and carbon nanofiber (CNF). The CuxO-NPs (5 wt%) doped AAC and rGO substrates were prepared by impregnation of copper nitrate followed by a thermal treatment process, while a similar weight of CuxO-NPs doped CNF was fabricated by electrospinning copper nitrate with polyacrylonitrile precursor, followed by carbonization. The CuxO species and chemical functions were characterized by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. Surface morphology was measured using scanning electron microscopy. The antimicrobial activities of the substrates were evaluated by inhibition zone measurement of Staphylococcus aureus and Escherichia coli. The results demonstrated significant inhibition distances for different carbon substrates. Interestingly, CuxO-NPs doped over both AAC and rGO surfaces revealed clear zones against bacteria, whereas the inhibition zone was not recorded for CuxO-NPs doped over a CNF substrate. Various parameters such as carbon substrates, particle size, and copper oxide species were investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米铜掺杂碳底物的合成与抗菌研究活性炭,还原氧化石墨烯和纳米碳纤维
铜氧化物(CuxO)由于其生物活性而受到广泛关注。CuxO纳米颗粒(NPs)附着在不同的底物上,对细菌和病毒表现出广泛的抗菌活性,具有与银相似的性质。在杏核活性炭(AAC)、还原氧化石墨烯(rGO)和碳纳米纤维(CNF)三种碳基质上,研究了CuxO-NPs掺杂在不同碳材料上的抗菌活性。采用硝酸铜浸渍和热处理的方法制备了掺CuxO-NPs(重量为5 wt%)的AAC和rGO衬底,采用聚丙烯腈前驱体硝酸铜静电纺丝法制备了掺CuxO-NPs(重量为5 wt%)的CNF。用x射线衍射和傅里叶红外光谱分别对CuxO的形态和化学功能进行了表征。用扫描电子显微镜测量表面形貌。通过对金黄色葡萄球菌和大肠杆菌的抑菌区测定来评价底物的抑菌活性。结果表明,对不同的碳底物有显著的抑制距离。有趣的是,在AAC和rGO表面上掺杂CuxO-NPs都显示出清晰的细菌抑制区,而在CNF底物上掺杂CuxO-NPs则没有记录到抑制区。考察了各种参数,如碳衬底、粒度和氧化铜种类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1