Design of a Sensor System Using Fiber Bragg Grating for Liquid Level and Liquid Density Measurement

Kalyan Biswas
{"title":"Design of a Sensor System Using Fiber Bragg Grating for Liquid Level and Liquid Density Measurement","authors":"Kalyan Biswas","doi":"10.1166/sl.2020.4304","DOIUrl":null,"url":null,"abstract":"In this work, a simple but versatile sensing system for very accurate sensing of liquid level and liquid density is presented. The sensor works based on basic strain sensitivity of Fiber Bragg Grating (FBG) and principle of liquid obeying Archimedes’ law of buoyancy. In this system,\n a cylindrical shaped mass suspended from a Fiber Bragg Grating and partially immersed in the liquid to be sensed. If the liquid level in the container or liquid density varies, that change the up thrust on the suspended mass and load on the Fiber will be changed accordingly. The change in\n the load on Fiber changes strain on the FBG and the reflected Bragg wavelength also changes. The proposed device with proper calibration should be able to carry out real time and nonstop liquid level and liquid density measurements. A mathematical analysis of the system considering liquid\n properties and geometrical structure of the suspended mass is presented here. Sensitivity of the system for liquid level monitoring is also reported. Achieved results shows the path for the utilization of the proposed sensor system for precise liquid density measurement and liquid level sensing\n in very large storage tanks used for commercial/residential applications.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a simple but versatile sensing system for very accurate sensing of liquid level and liquid density is presented. The sensor works based on basic strain sensitivity of Fiber Bragg Grating (FBG) and principle of liquid obeying Archimedes’ law of buoyancy. In this system, a cylindrical shaped mass suspended from a Fiber Bragg Grating and partially immersed in the liquid to be sensed. If the liquid level in the container or liquid density varies, that change the up thrust on the suspended mass and load on the Fiber will be changed accordingly. The change in the load on Fiber changes strain on the FBG and the reflected Bragg wavelength also changes. The proposed device with proper calibration should be able to carry out real time and nonstop liquid level and liquid density measurements. A mathematical analysis of the system considering liquid properties and geometrical structure of the suspended mass is presented here. Sensitivity of the system for liquid level monitoring is also reported. Achieved results shows the path for the utilization of the proposed sensor system for precise liquid density measurement and liquid level sensing in very large storage tanks used for commercial/residential applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光纤光栅液位和液体密度传感器系统的设计
在这项工作中,提出了一个简单而通用的传感系统,用于非常精确地传感液位和液体密度。该传感器基于光纤光栅的基本应变灵敏度和液体服从阿基米德浮力定律的原理工作。在该系统中,一个圆柱形的物体悬挂在光纤布拉格光栅上,部分浸入待测液体中。如果容器内的液位或液体密度发生变化,则对悬浮质量的向上推力和对纤维的载荷也会发生相应的变化。光纤负载的变化会改变光纤光栅上的应变,反射的布拉格波长也会发生变化。所建议的具有适当校准的设备应该能够进行实时和不间断的液位和液体密度测量。考虑液体性质和悬体的几何结构,对该系统进行了数学分析。本文还报道了该系统对液位监测的灵敏度。取得的结果显示了在商业/住宅应用的超大型储罐中使用所提出的传感器系统进行精确液体密度测量和液位传感的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensor Letters
Sensor Letters 工程技术-电化学
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
期刊最新文献
Design of a Sensor System Using Fiber Bragg Grating for Liquid Level and Liquid Density Measurement Electrical, Optical, Structural Properties with Some Physico-Mechanical of Pure and La3+ Doped L-Alanine Acetate Single Crystals Solvent Assisted Coaxial-Electrospun Poly Methyl Methacrylate Polymer and Study of Resultant Fibers Precise Design of Micro-Cantilever Sensor for Biomedical Application Mine Fire Safety Monitoring in Underground Metal Mines: Is Zigbee Wireless Sensor Networks Technology the Best Choice?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1