SPECTR

Q1 Computer Science ACM Sigplan Notices Pub Date : 2018-11-30 DOI:10.1145/3296957.3173199
A. Rahmani, Bryan Donyanavard, T. Mück, Kasra Moazzemi, A. Jantsch, O. Mutlu, N. Dutt
{"title":"SPECTR","authors":"A. Rahmani, Bryan Donyanavard, T. Mück, Kasra Moazzemi, A. Jantsch, O. Mutlu, N. Dutt","doi":"10.1145/3296957.3173199","DOIUrl":null,"url":null,"abstract":"Resource management strategies for many-core systems need to enable sharing of resources such as power, processing cores, and memory bandwidth while coordinating the priority and significance of system- and application-level objectives at runtime in a scalable and robust manner. State-of-the-art approaches use heuristics or machine learning for resource management, but unfortunately lack formalism in providing robustness against unexpected corner cases. While recent efforts deploy classical control-theoretic approaches with some guarantees and formalism, they lack scalability and autonomy to meet changing runtime goals. We present SPECTR, a new resource management approach for many-core systems that leverages formal supervisory control theory (SCT) to combine the strengths of classical control theory with state-of-the-art heuristic approaches to efficiently meet changing runtime goals. SPECTR is a scalable and robust control architecture and a systematic design flow for hierarchical control of many-core systems. SPECTR leverages SCT techniques such as gain scheduling to allow autonomy for individual controllers. It facilitates automatic synthesis of the high-level supervisory controller and its property verification. We implement SPECTR on an Exynos platform containing ARM»s big.LITTLE-based heterogeneous multi-processor (HMP) and demonstrate that SPECTR»s use of SCT is key to managing multiple interacting resources (e.g., chip power and processing cores) in the presence of competing objectives (e.g., satisfying QoS vs. power capping). The principles of SPECTR are easily applicable to any resource type and objective as long as the management problem can be modeled using dynamical systems theory (e.g., difference equations), discrete-event dynamic systems, or fuzzy dynamics.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296957.3173199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 169

Abstract

Resource management strategies for many-core systems need to enable sharing of resources such as power, processing cores, and memory bandwidth while coordinating the priority and significance of system- and application-level objectives at runtime in a scalable and robust manner. State-of-the-art approaches use heuristics or machine learning for resource management, but unfortunately lack formalism in providing robustness against unexpected corner cases. While recent efforts deploy classical control-theoretic approaches with some guarantees and formalism, they lack scalability and autonomy to meet changing runtime goals. We present SPECTR, a new resource management approach for many-core systems that leverages formal supervisory control theory (SCT) to combine the strengths of classical control theory with state-of-the-art heuristic approaches to efficiently meet changing runtime goals. SPECTR is a scalable and robust control architecture and a systematic design flow for hierarchical control of many-core systems. SPECTR leverages SCT techniques such as gain scheduling to allow autonomy for individual controllers. It facilitates automatic synthesis of the high-level supervisory controller and its property verification. We implement SPECTR on an Exynos platform containing ARM»s big.LITTLE-based heterogeneous multi-processor (HMP) and demonstrate that SPECTR»s use of SCT is key to managing multiple interacting resources (e.g., chip power and processing cores) in the presence of competing objectives (e.g., satisfying QoS vs. power capping). The principles of SPECTR are easily applicable to any resource type and objective as long as the management problem can be modeled using dynamical systems theory (e.g., difference equations), discrete-event dynamic systems, or fuzzy dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPECTR
多核系统的资源管理策略需要支持资源共享,如电力、处理核心和内存带宽,同时在运行时以可扩展和健壮的方式协调系统级和应用程序级目标的优先级和重要性。最先进的方法使用启发式或机器学习进行资源管理,但不幸的是,在提供针对意外情况的鲁棒性方面缺乏形式化。虽然最近的努力部署了具有一些保证和形式化的经典控制理论方法,但它们缺乏可伸缩性和自主性,无法满足不断变化的运行时目标。我们提出了spectrr,一种针对多核心系统的新的资源管理方法,它利用正式监督控制理论(SCT)将经典控制理论的优势与最先进的启发式方法相结合,以有效地满足不断变化的运行时目标。spectrr是一种可扩展的鲁棒控制体系结构,是一种用于多核心系统分层控制的系统设计流程。spectrr利用SCT技术(如增益调度)来实现单个控制器的自主性。它便于高级监控控制器的自动合成及其性能验证。我们在Exynos平台上实现了specr,该平台包含ARM的big。基于little的异构多处理器(HMP),并证明在存在竞争目标(例如,满足QoS与功率上限)的情况下,spectrr使用SCT是管理多个交互资源(例如,芯片功率和处理核心)的关键。只要管理问题可以用动态系统理论(如差分方程)、离散事件动态系统或模糊动力学建模,spectrr的原理就很容易适用于任何资源类型和目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Sigplan Notices
ACM Sigplan Notices 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).
期刊最新文献
Outcomes of Endoscopic Drainage in Children with Pancreatic Fluid Collections: A Systematic Review and Meta-Analysis. Letter from the Chair SEIS Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018 Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1