{"title":"PLASMA ELECTRON DENSITY MEASUREMENTS BY LASER- AND COLLISION-INDUCED FLUORESCENCE METHOD","authors":"K. Tsuchida, S. Miyake, K. Kadota, J. Fujita","doi":"10.1088/0032-1028/25/9/003","DOIUrl":null,"url":null,"abstract":"A new method based on the laser-induced fluorescence method has been developed to measure the spatial electron density distribution in plasmas. The local electron density can be determined by observing the intensity ratio of the laser- to the collision-induced fluorescence. A spatial electron density distribution of a helium plasma (Te approximately 6 eV, ne:1011-12 cm-3) has been determined by observing the He(31P to 21S) laser-induced fluorescence and the He(31D to 21P) collision-induced fluorescence resulting from the He(31P to 31D) process due to collisions with electrons. The comparison of the result with that of a conventional method proves this new method is of practical use in the space-resolved measurements of plasma electron density.","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"24 1","pages":"1-27"},"PeriodicalIF":0.0000,"publicationDate":"1982-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0032-1028/25/9/003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
A new method based on the laser-induced fluorescence method has been developed to measure the spatial electron density distribution in plasmas. The local electron density can be determined by observing the intensity ratio of the laser- to the collision-induced fluorescence. A spatial electron density distribution of a helium plasma (Te approximately 6 eV, ne:1011-12 cm-3) has been determined by observing the He(31P to 21S) laser-induced fluorescence and the He(31D to 21P) collision-induced fluorescence resulting from the He(31P to 31D) process due to collisions with electrons. The comparison of the result with that of a conventional method proves this new method is of practical use in the space-resolved measurements of plasma electron density.