A Local Supervised Learning Algorithm For Multi-Layer Perceptrons

D. S. Vlachos
{"title":"A Local Supervised Learning Algorithm For Multi-Layer Perceptrons","authors":"D. S. Vlachos","doi":"10.1002/anac.200410016","DOIUrl":null,"url":null,"abstract":"<p>The back propagation of error in multi-layer perceptrons when used for supervised training is a non-local algorithm in space, that is it needs the knowledge of the network topology. On the other hand, learning rules in biological systems with many hidden units, seem to be local in both space and time. In this work, a local learning algorithm is proposed which makes no distinction between input, hidden and output layers. Simulation results are presented and compared with other well known training algorithms. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"535-539"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The back propagation of error in multi-layer perceptrons when used for supervised training is a non-local algorithm in space, that is it needs the knowledge of the network topology. On the other hand, learning rules in biological systems with many hidden units, seem to be local in both space and time. In this work, a local learning algorithm is proposed which makes no distinction between input, hidden and output layers. Simulation results are presented and compared with other well known training algorithms. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层感知器的局部监督学习算法
多层感知器在进行监督训练时,误差的反向传播是一种空间上的非局部算法,即需要了解网络拓扑结构。另一方面,具有许多隐藏单元的生物系统中的学习规则似乎在空间和时间上都是局部的。本文提出了一种不区分输入层、隐藏层和输出层的局部学习算法。给出了仿真结果,并与其他知名训练算法进行了比较。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of the Greatest Common Divisor of many polynomials using hybrid computations performed by the ERES method Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods Analytic Evaluation of Collocation Integrals for the Radiosity Equation A Symplectic Trigonometrically Fitted Modified Partitioned Runge-Kutta Method for the Numerical Integration of Orbital Problems Solving Hyperbolic PDEs in MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1