J. Strickland, B. Nenchev, K. Tassenberg, S. Perry, Gareth R. Sheppard, Hongbiao Dong, Ruiyao Zhang, G. Burca, N. D’Souza
{"title":"On the Origin of Mosaicity in Directionally Solidified Ni-Base Superalloys","authors":"J. Strickland, B. Nenchev, K. Tassenberg, S. Perry, Gareth R. Sheppard, Hongbiao Dong, Ruiyao Zhang, G. Burca, N. D’Souza","doi":"10.2139/ssrn.3854484","DOIUrl":null,"url":null,"abstract":"Abstract This article addresses the formation of low angle grain boundaries which give rise to mosaicity, a phenomenon that has only recently received attention in the single crystal Ni-base superalloy field. In this work, post-mortem advanced microscopy characterisation techniques are employed to deduce the dendrite tip growth kinetics from transverse sections of a single crystal turbine blade. As a result, it has been possible to highlight the role of isotherm curvature in inducing lateral macro-segregation parallel to a growing solidification front. Using crystallographic data from time-of-flight energy-resolved neutron imaging and novel Bragg-dip post processing, it is established that lateral macro-segregation induces small angle grain boundaries which gives rise to mosaicity within single crystal Ni-base superalloys. Mosaicity demonstrates good correlation with the local primary spacing, where faster growing dendrites demonstrate greater deviation of 〈001〉 from the casting direction, as compared with those growing at a slower rate. In light of these findings, the origin of mosaicity and its implication to secondary grain formation is discussed.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3854484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract This article addresses the formation of low angle grain boundaries which give rise to mosaicity, a phenomenon that has only recently received attention in the single crystal Ni-base superalloy field. In this work, post-mortem advanced microscopy characterisation techniques are employed to deduce the dendrite tip growth kinetics from transverse sections of a single crystal turbine blade. As a result, it has been possible to highlight the role of isotherm curvature in inducing lateral macro-segregation parallel to a growing solidification front. Using crystallographic data from time-of-flight energy-resolved neutron imaging and novel Bragg-dip post processing, it is established that lateral macro-segregation induces small angle grain boundaries which gives rise to mosaicity within single crystal Ni-base superalloys. Mosaicity demonstrates good correlation with the local primary spacing, where faster growing dendrites demonstrate greater deviation of 〈001〉 from the casting direction, as compared with those growing at a slower rate. In light of these findings, the origin of mosaicity and its implication to secondary grain formation is discussed.