{"title":"Wide current range and high compliance-voltage bulk-driven current mirrors: Simple and cascode","authors":"K. Sooksood","doi":"10.1109/APCCAS.2016.7803943","DOIUrl":null,"url":null,"abstract":"This paper presents novel bulk-driven current mirror and bulk-driven cascode current mirror. Bulk-driven technique is employed to overcome a threshold voltage limitation. High accuracy transfer characteristic over wide current range is achieved through a negative feedback. The proposed circuits are designed and simulated with a 0.18 μm CMOS technology. They operate at 1 V power supply. The simulation results show the headroom voltage of 0.11 V and 0.16 V for the proposed bulk driven current mirror and bulk driven cascode current mirror, respectively.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"121 1","pages":"240-242"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents novel bulk-driven current mirror and bulk-driven cascode current mirror. Bulk-driven technique is employed to overcome a threshold voltage limitation. High accuracy transfer characteristic over wide current range is achieved through a negative feedback. The proposed circuits are designed and simulated with a 0.18 μm CMOS technology. They operate at 1 V power supply. The simulation results show the headroom voltage of 0.11 V and 0.16 V for the proposed bulk driven current mirror and bulk driven cascode current mirror, respectively.