Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data

IF 0.8 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2022-11-02 DOI:10.1111/stan.12282
Soumya Roy, B. Pradhan
{"title":"Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data","authors":"Soumya Roy, B. Pradhan","doi":"10.1111/stan.12282","DOIUrl":null,"url":null,"abstract":"In this article, we present statistical inference of unknown lifetime parameters based on a progressive Type‐I interval censored dataset in presence of independent competing risks. A progressive Type‐I interval censoring scheme is a generalization of an interval censoring scheme, allowing intermediate withdrawals of test units at the inspection points. We assume that the lifetime distribution corresponding to a failure mode belongs to a log‐location‐scale family of distributions. Subsequently, we present the maximum likelihood analysis for unknown model parameters. We observe that the numerical computation of the maximum likelihood estimates can be significantly eased by developing an expectation‐maximization algorithm. We demonstrate the same for three popular choices of the log‐location‐scale family of distributions. We then provide Bayesian inference of the unknown lifetime parameters via Gibbs Sampling and a related data augmentation scheme. We compare the performance of the maximum likelihood estimators and Bayesian estimators using a detailed simulation study. We also illustrate the developed methods using a progressive Type‐I interval censored dataset.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"40 1","pages":"208 - 232"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present statistical inference of unknown lifetime parameters based on a progressive Type‐I interval censored dataset in presence of independent competing risks. A progressive Type‐I interval censoring scheme is a generalization of an interval censoring scheme, allowing intermediate withdrawals of test units at the inspection points. We assume that the lifetime distribution corresponding to a failure mode belongs to a log‐location‐scale family of distributions. Subsequently, we present the maximum likelihood analysis for unknown model parameters. We observe that the numerical computation of the maximum likelihood estimates can be significantly eased by developing an expectation‐maximization algorithm. We demonstrate the same for three popular choices of the log‐location‐scale family of distributions. We then provide Bayesian inference of the unknown lifetime parameters via Gibbs Sampling and a related data augmentation scheme. We compare the performance of the maximum likelihood estimators and Bayesian estimators using a detailed simulation study. We also illustrate the developed methods using a progressive Type‐I interval censored dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于渐进式I型区间截尾数据的竞争风险下对数-位置-尺度分布族的推断
在本文中,我们基于存在独立竞争风险的渐进式I型区间截尾数据集提出了未知寿命参数的统计推断。渐进式I型区间截尾方案是区间截尾方案的一种推广,允许在检查点对试验装置进行中间撤离。我们假设失效模式对应的寿命分布属于对数-位置-尺度分布族。随后,我们提出了未知模型参数的最大似然分析。我们观察到,通过开发期望最大化算法,极大似然估计的数值计算可以显着简化。我们对对数-位置-尺度分布家族的三种流行选择进行了相同的演示。然后,我们通过吉布斯采样和相关的数据增强方案提供了未知寿命参数的贝叶斯推断。我们通过详细的仿真研究比较了极大似然估计器和贝叶斯估计器的性能。我们还使用渐进式I型区间截尾数据集说明了开发的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
Efficient estimation for the multivariate Cox model with missing covariates. On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1