Exploring a Variant of PTC 4-2013 for Real-Time Performance Monitoring of Fossil Fuel Power Plants

Joseph M. Staller, R. Craven, S. Idem, S. Munukutla, Keith Kirkpatrick, D. Benton, Susan Eisenstadt, Karsten Kopperstad, Seth Leedy, J. McHale, A. Licata, Dan Andrei
{"title":"Exploring a Variant of PTC 4-2013 for Real-Time Performance Monitoring of Fossil Fuel Power Plants","authors":"Joseph M. Staller, R. Craven, S. Idem, S. Munukutla, Keith Kirkpatrick, D. Benton, Susan Eisenstadt, Karsten Kopperstad, Seth Leedy, J. McHale, A. Licata, Dan Andrei","doi":"10.1115/1.4055467","DOIUrl":null,"url":null,"abstract":"\n This paper describes a real-time performance-monitoring method based on PTC 4-2013 that was developed for determining and reporting the annual heat rate for fossil fuel power plants. Unlike for the PTC 4 test, the coal composition is typically not known in real-time, so the procedure uses a modified output-loss approach applied to a control volume that closely conforms to the boiler. A calibration approach utilizes an ultimate analysis to describe the coal being burned during the calibration, while holding the plant load and other factors steady. This permits the calculation of correction factors used during real-time performance monitoring. Based on several assumptions that are justified within, a real-time estimate of coal composition is obtained. The losses are calculated in a similar manner to PTC 4-2013. However, the losses are expressed on a per-pound of as-fired coal basis, as opposed to a percentage of higher heating value of the coal, which is not known in real-time.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a real-time performance-monitoring method based on PTC 4-2013 that was developed for determining and reporting the annual heat rate for fossil fuel power plants. Unlike for the PTC 4 test, the coal composition is typically not known in real-time, so the procedure uses a modified output-loss approach applied to a control volume that closely conforms to the boiler. A calibration approach utilizes an ultimate analysis to describe the coal being burned during the calibration, while holding the plant load and other factors steady. This permits the calculation of correction factors used during real-time performance monitoring. Based on several assumptions that are justified within, a real-time estimate of coal composition is obtained. The losses are calculated in a similar manner to PTC 4-2013. However, the losses are expressed on a per-pound of as-fired coal basis, as opposed to a percentage of higher heating value of the coal, which is not known in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于化石燃料电厂实时性能监测的PTC 4-2013变体探索
本文描述了一种基于PTC 4-2013的实时性能监测方法,该方法用于确定和报告化石燃料发电厂的年热率。与PTC 4测试不同的是,煤的组成通常是无法实时得知的,因此该程序使用了一种改进的输出损耗方法,应用于与锅炉密切相关的控制体积。校准方法利用最终分析来描述在校准期间燃烧的煤,同时保持电厂负荷和其他因素稳定。这允许计算在实时性能监视期间使用的校正因子。基于几个合理的假设,获得了煤成分的实时估计。损失的计算方法与PTC 4-2013相似。然而,损失是以每磅燃烧后的煤为基础来表示的,而不是以煤的高热值的百分比来表示,这是无法实时知道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1