In this paper, the system performance of R744 and R744/R170 mixed refrigerants used in a single-stage compression transcritical cycle at low evaporation temperature was studied by simulation method, and the effect of evaporation temperature, outlet temperature of gas cooler, R170 ratio on coefficient of performance (COP), discharge temperature, optimal pressure, and compression ratio were analyzed. The results show that Popt increases and decreases with the increase of outlet temperature and evaporation temperature of gas cooler and increases first and then decreases with the increase of R170 proportion. In the heating system, the maximum and minimum Popt of R744/R170 (25/75) were 1.35 MPa, 3.6 MPa, and 2.6 MPa and 1.23 MPa, 2.93 MPa, and 1.87 MPa lower than that of R170 (0%, 22.4%, and 50%); compared to pure R744, the system pressure of the mixed R744/R170 is lower. The COPe and COPh increase with the increase of evaporation temperature and decrease with the increase of outlet temperature of the gas cooler. With the increase of R170 proportion, they first decrease and then increase; the maximum COPe and COPh of R744 were 22.4%, 29.6%, and 21.2% and 10.3%, 13.8%, and 10.8% higher than those of R170 at 22.4%, 50% and 75%, respectively.
{"title":"Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature","authors":"Dahan Sun, Zhong-zhu Liu, Hao Zhang, Xin Zhang, Jiang Qin","doi":"10.1115/1.4064403","DOIUrl":"https://doi.org/10.1115/1.4064403","url":null,"abstract":"\u0000 In this paper, the system performance of R744 and R744/R170 mixed refrigerants used in a single-stage compression transcritical cycle at low evaporation temperature was studied by simulation method, and the effect of evaporation temperature, outlet temperature of gas cooler, R170 ratio on coefficient of performance (COP), discharge temperature, optimal pressure, and compression ratio were analyzed. The results show that Popt increases and decreases with the increase of outlet temperature and evaporation temperature of gas cooler and increases first and then decreases with the increase of R170 proportion. In the heating system, the maximum and minimum Popt of R744/R170 (25/75) were 1.35 MPa, 3.6 MPa, and 2.6 MPa and 1.23 MPa, 2.93 MPa, and 1.87 MPa lower than that of R170 (0%, 22.4%, and 50%); compared to pure R744, the system pressure of the mixed R744/R170 is lower. The COPe and COPh increase with the increase of evaporation temperature and decrease with the increase of outlet temperature of the gas cooler. With the increase of R170 proportion, they first decrease and then increase; the maximum COPe and COPh of R744 were 22.4%, 29.6%, and 21.2% and 10.3%, 13.8%, and 10.8% higher than those of R170 at 22.4%, 50% and 75%, respectively.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"24 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139539826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We describe a roadmap using three sets of technologies to enable base-load nuclear reactors to replace all fossil fuels in a low-carbon world. The technologies integrate nuclear, wind, solar, hydroelectricity and biomass energy sources. Base-load nuclear reactors with large-scale heat storage enable dispatchable electricity to the grid. The low-cost heat storage enables buying excess wind and solar electricity to charge heat storage for later electricity production while providing assured generating capacity. Nuclear hydrogen production facilities at the scale of global oil refineries produce hydrogen to replace natural gas (gaseous fuel) as a chemical feedstock and heat source. Single sites may have tens of modular reactors produced in a local factory to lower costs by converting to a manufacturing model for reactor construction. Nuclear heat and hydrogen convert cellulosic biomass into drop-in liquid hydrocarbon biofuels to replace fossil-fuel gasoline, diesel, jet fuel, and hydrocarbon feed stocks for the chemical industry. External heat and hydrogen inputs increase the quantities of biofuels that can be produced per unit of cellulosic feedstock, thus assuring sufficient biomass feed stocks to replace all crude oil without major impacts on food and fiber prices. The biofuel production system enables the removal of large quantities of carbon dioxide from the atmosphere that is sequestered as carbon char in the soil while recycling plant nutrients (potassium, phosphorous, etc.) to assure agricultural and forest sustainability.
{"title":"Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity","authors":"Charles Forsberg, Bruce E. Dale, Eric Ingersoll","doi":"10.1115/1.4064592","DOIUrl":"https://doi.org/10.1115/1.4064592","url":null,"abstract":"\u0000 We describe a roadmap using three sets of technologies to enable base-load nuclear reactors to replace all fossil fuels in a low-carbon world. The technologies integrate nuclear, wind, solar, hydroelectricity and biomass energy sources. Base-load nuclear reactors with large-scale heat storage enable dispatchable electricity to the grid. The low-cost heat storage enables buying excess wind and solar electricity to charge heat storage for later electricity production while providing assured generating capacity. Nuclear hydrogen production facilities at the scale of global oil refineries produce hydrogen to replace natural gas (gaseous fuel) as a chemical feedstock and heat source. Single sites may have tens of modular reactors produced in a local factory to lower costs by converting to a manufacturing model for reactor construction. Nuclear heat and hydrogen convert cellulosic biomass into drop-in liquid hydrocarbon biofuels to replace fossil-fuel gasoline, diesel, jet fuel, and hydrocarbon feed stocks for the chemical industry. External heat and hydrogen inputs increase the quantities of biofuels that can be produced per unit of cellulosic feedstock, thus assuring sufficient biomass feed stocks to replace all crude oil without major impacts on food and fiber prices. The biofuel production system enables the removal of large quantities of carbon dioxide from the atmosphere that is sequestered as carbon char in the soil while recycling plant nutrients (potassium, phosphorous, etc.) to assure agricultural and forest sustainability.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140524167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily Porter, Lourdes Farrugia, Punit Prakash, Raquel C. Conceição, Devashish Shrivastava, Rosa Scapaticci, Stefano Mandija, Marta Cavagnaro, Sergio Curto
The dielectric properties of biological tissues are key parameters that support the design and usability of a wide range of electromagnetic-based medical applications, including for diagnostics and therapeutics, and allow the determination of safety and health effects due to exposure to electromagnetic fields. While an extensive body of literature exists that reports on values of these properties for different tissue types under different measurement conditions, it is now evident that there are large uncertainties and inconsistencies between measurement reports. Due to varying measurement techniques, limited measurement validation strategies, and lack of metadata reporting and confounder control, reported dielectric properties suffer from a lack of repeatability and questionable accuracy. Recently, the American Society of Mechanical Engineers (ASME) Thermal Medicine Standards Committee was formed, which included a Tissue Properties working group. This effort aims to support the translation and commercialization of medical technologies, through the development of a standard lexicon and standard measurement protocols. In this work, we present initial results from the Electromagnetic Tissue Properties subgroup. Specifically, this paper reports a critical gap analysis facing the standardization pathway for the dielectric measurement of biological tissues. All established measurement techniques are examined and compared, and emerging ones are assessed. Perspectives on the importance and challenges in measurement validation, accuracy calculation, metadata collection, and reporting are also discussed.
{"title":"Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues","authors":"Emily Porter, Lourdes Farrugia, Punit Prakash, Raquel C. Conceição, Devashish Shrivastava, Rosa Scapaticci, Stefano Mandija, Marta Cavagnaro, Sergio Curto","doi":"10.1115/1.4064746","DOIUrl":"https://doi.org/10.1115/1.4064746","url":null,"abstract":"\u0000 The dielectric properties of biological tissues are key parameters that support the design and usability of a wide range of electromagnetic-based medical applications, including for diagnostics and therapeutics, and allow the determination of safety and health effects due to exposure to electromagnetic fields. While an extensive body of literature exists that reports on values of these properties for different tissue types under different measurement conditions, it is now evident that there are large uncertainties and inconsistencies between measurement reports. Due to varying measurement techniques, limited measurement validation strategies, and lack of metadata reporting and confounder control, reported dielectric properties suffer from a lack of repeatability and questionable accuracy. Recently, the American Society of Mechanical Engineers (ASME) Thermal Medicine Standards Committee was formed, which included a Tissue Properties working group. This effort aims to support the translation and commercialization of medical technologies, through the development of a standard lexicon and standard measurement protocols. In this work, we present initial results from the Electromagnetic Tissue Properties subgroup. Specifically, this paper reports a critical gap analysis facing the standardization pathway for the dielectric measurement of biological tissues. All established measurement techniques are examined and compared, and emerging ones are assessed. Perspectives on the importance and challenges in measurement validation, accuracy calculation, metadata collection, and reporting are also discussed.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140522377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind energy has proven to be one of the most promising resources to meet the challenges of rising clean energy demand and mitigate environmental pollution. The global new installation of wind turbines in 2022 was 77.6 GW, bringing the total installed capacity to 906 GW, documenting an astounding 9% growth in just one year (Lee and Zhao, 2023, Global Wind Report, GWEC. Global Wind Energy Council). Sizeable research continues to focus on improving wind energy conversion, safety, and capacity. However, funding allocations and research have not matched this sustained market growth observed over the last few decades. This is particularly the case for small-size wind turbines. We define small-scale wind turbines as those with an output power of 40 kW or less that can nonetheless be interconnected to provide larger power output. Thus, the paper focuses on small-scale horizontal-axis wind turbines (HAWT) with emphasis on current technology trends including data gathering, aerodynamic performance analysis of airfoils and rotors, as well as computational approaches. The paper also highlights the challenges associated with small-scale HAWTs thereby conjecturing about future research directions on the subject. The literature review suggests that small-scale HAWT wind turbines are suitable for harnessing energy in communities with limited resources where grid-supplied power is out of reach. The power coefficient of these turbines ranges from 0.2 to 0.45 which shows that it could greatly benefit from research, built on targeting these modest performance scales by using efficient airfoils, mixed airfoils, optimizing the blade geometry, shrouding the wind turbine rotor, using maximum power tracking control, etc. This review paper is an attempt to prioritize and layout strategies toward evaluating and enhancing the aerodynamic performance of small-scale HAWTs.
{"title":"Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review","authors":"Belayneh Y. Kassa, A. T. Baheta, A. Beyene","doi":"10.1115/1.4064141","DOIUrl":"https://doi.org/10.1115/1.4064141","url":null,"abstract":"\u0000 Wind energy has proven to be one of the most promising resources to meet the challenges of rising clean energy demand and mitigate environmental pollution. The global new installation of wind turbines in 2022 was 77.6 GW, bringing the total installed capacity to 906 GW, documenting an astounding 9% growth in just one year (Lee and Zhao, 2023, Global Wind Report, GWEC. Global Wind Energy Council). Sizeable research continues to focus on improving wind energy conversion, safety, and capacity. However, funding allocations and research have not matched this sustained market growth observed over the last few decades. This is particularly the case for small-size wind turbines. We define small-scale wind turbines as those with an output power of 40 kW or less that can nonetheless be interconnected to provide larger power output. Thus, the paper focuses on small-scale horizontal-axis wind turbines (HAWT) with emphasis on current technology trends including data gathering, aerodynamic performance analysis of airfoils and rotors, as well as computational approaches. The paper also highlights the challenges associated with small-scale HAWTs thereby conjecturing about future research directions on the subject. The literature review suggests that small-scale HAWT wind turbines are suitable for harnessing energy in communities with limited resources where grid-supplied power is out of reach. The power coefficient of these turbines ranges from 0.2 to 0.45 which shows that it could greatly benefit from research, built on targeting these modest performance scales by using efficient airfoils, mixed airfoils, optimizing the blade geometry, shrouding the wind turbine rotor, using maximum power tracking control, etc. This review paper is an attempt to prioritize and layout strategies toward evaluating and enhancing the aerodynamic performance of small-scale HAWTs.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"346 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katie A. Martin, T. Thornell, Hayden A. Hanna, Charles A. Weiss, Zackery B. McClelland
Switchable multistable structures (SMS) are additively manufactured metamaterials. SMS are printed in polylactic acid, a shape memory polymer, and pre-strain is stored in bilayers during fused deposition modeling 3D printing process that encode different stable states can be activated above the glass transition temperature (Tg). Eight filament colors were used to 3D print sample squares. A hot water bath was used to determine sample bistability or monostability. Differential scanning calorimetry determined the Tg and melting temperature, (Tm). Thermogravimetric analysis was used to investigate colored filament thermal stability. The viscoelasticity of colored filament was investigated with melt rheology and the crystallinity of the printed samples was studied with X-ray diffraction. Filament color was an indicator of bistability and colors with lower Tm values tended to be bistable. Polyethylene terephthalate glycol SMS exhibited the shape memory effect but did not show bistability with the given print parameters. Bistability is achieved when the difference between the pre-strain of the bilayers is less than the energy needed to snap the sample to a given state. The relationship between monostability, self-snapping back to a favored state, and bistability is explained by a series of mathematical equations. Future work includes printing pre-strain relationship and the molecular level impact.
可转换多稳态结构(SMS)是一种添加式制造的超材料。SMS 是用聚乳酸(一种形状记忆聚合物)打印的,在熔融沉积建模三维打印过程中,预应变被存储在双层中,编码的不同稳定状态可在玻璃化温度(Tg)以上被激活。八种颜色的长丝用于三维打印样品方块。使用热水浴确定样品的双稳态或单稳态。差示扫描量热法确定了 Tg 和熔化温度 (Tm)。热重分析用于研究彩色长丝的热稳定性。用熔体流变学研究了彩色长丝的粘弹性,用 X 射线衍射研究了印刷样品的结晶度。长丝颜色是双稳态性的指标,Tm 值较低的颜色往往具有双稳态性。聚对苯二甲酸乙二醇酯 SMS 具有形状记忆效应,但在给定的打印参数下不具有双稳态性。当双层膜的预应变之间的差值小于将样品压缩到给定状态所需的能量时,就会实现双稳态。一系列数学公式解释了单稳态、自折返到有利状态和双稳态之间的关系。未来的工作包括打印预应变关系和分子水平影响。
{"title":"Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares","authors":"Katie A. Martin, T. Thornell, Hayden A. Hanna, Charles A. Weiss, Zackery B. McClelland","doi":"10.1115/1.4064142","DOIUrl":"https://doi.org/10.1115/1.4064142","url":null,"abstract":"\u0000 Switchable multistable structures (SMS) are additively manufactured metamaterials. SMS are printed in polylactic acid, a shape memory polymer, and pre-strain is stored in bilayers during fused deposition modeling 3D printing process that encode different stable states can be activated above the glass transition temperature (Tg). Eight filament colors were used to 3D print sample squares. A hot water bath was used to determine sample bistability or monostability. Differential scanning calorimetry determined the Tg and melting temperature, (Tm). Thermogravimetric analysis was used to investigate colored filament thermal stability. The viscoelasticity of colored filament was investigated with melt rheology and the crystallinity of the printed samples was studied with X-ray diffraction. Filament color was an indicator of bistability and colors with lower Tm values tended to be bistable. Polyethylene terephthalate glycol SMS exhibited the shape memory effect but did not show bistability with the given print parameters. Bistability is achieved when the difference between the pre-strain of the bilayers is less than the energy needed to snap the sample to a given state. The relationship between monostability, self-snapping back to a favored state, and bistability is explained by a series of mathematical equations. Future work includes printing pre-strain relationship and the molecular level impact.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"19 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Clarin, Dominique Dang, Lucas Santos, Rouzbeh Amini
Mechanical characterization of the ex vivo tricuspid valve (TV) continues to provide key insights into native valve function and the development of valvular diseases. However, experimental methods to characterize TV biomechanical behavior ex vivo often fail to account for potential changes in the tissue’s mechanical responses that may occur during experiment preparation. Therefore, we assessed the mechanical responses of the anterior tricuspid leaflet (ATL) via biaxial mechanical testing over the course of 5 h to validate the accuracy of our fresh tissue experiments. We hypothesized that ATL mechanical responses would remain consistent for the proposed time scale. We found that ATL stiffness, represented by the upper tangent modulus (UTM), did not significantly change in either the radial or circumferential directions for the 5-h test period. Similarly, no significant change was observed in radial or circumferential strains corresponding to an estimated mean systolic stress value of 85 kPa. Overall mean UTM (±standard error of the mean (SEM)) showed that ATL samples were significantly stiffer in the circumferential direction (11.3 ± 0.98 MPa) compared to the radial direction (2.29 ± 0.20 MPa) across all time points. Thus, our results indicate that the outcomes of ex vivo tricuspid valve studies requiring sample preparation up to 5 h remain reliable.
{"title":"Mechanical Characterization of Porcine Tricuspid Valve Anterior Leaflets Over Time: Applications to Ex Vivo Studies","authors":"Julia Clarin, Dominique Dang, Lucas Santos, Rouzbeh Amini","doi":"10.1115/1.4062477","DOIUrl":"https://doi.org/10.1115/1.4062477","url":null,"abstract":"\u0000 Mechanical characterization of the ex vivo tricuspid valve (TV) continues to provide key insights into native valve function and the development of valvular diseases. However, experimental methods to characterize TV biomechanical behavior ex vivo often fail to account for potential changes in the tissue’s mechanical responses that may occur during experiment preparation. Therefore, we assessed the mechanical responses of the anterior tricuspid leaflet (ATL) via biaxial mechanical testing over the course of 5 h to validate the accuracy of our fresh tissue experiments. We hypothesized that ATL mechanical responses would remain consistent for the proposed time scale. We found that ATL stiffness, represented by the upper tangent modulus (UTM), did not significantly change in either the radial or circumferential directions for the 5-h test period. Similarly, no significant change was observed in radial or circumferential strains corresponding to an estimated mean systolic stress value of 85 kPa. Overall mean UTM (±standard error of the mean (SEM)) showed that ATL samples were significantly stiffer in the circumferential direction (11.3 ± 0.98 MPa) compared to the radial direction (2.29 ± 0.20 MPa) across all time points. Thus, our results indicate that the outcomes of ex vivo tricuspid valve studies requiring sample preparation up to 5 h remain reliable.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"59 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73103589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to interest in aspects such as process, strategies, and tools of engineering changes expressed in a literature review, a case study was done on a major automotive original equipment manufacturer (OEM) to assess the perceived quality of its part engineering change management process and supporting system through its employees’ eyes. A combination of 12 interviews lasting 12 h and 46 written surveys was used to capture the views of participants from all major functions found at the research and development (R&D) headquarters of the OEM: Purchasing, Production, Development, and one group consisting of all other functions (“Other”). Statistical analysis was performed to identify statistically significant differences between employee perceptions of an engineering change management system among different departments, amount of use, and years of use. It was found that statistically significant differences exist in terms of understanding the usability of the system between different departments and also between different years of experience.
{"title":"Part Change Management: A Case Study on Automotive Engineering and Production; Domestic and International Perspectives","authors":"Stephan Knackstedt, M. Sutton, Joshua D. Summers","doi":"10.1115/1.4056813","DOIUrl":"https://doi.org/10.1115/1.4056813","url":null,"abstract":"\u0000 Due to interest in aspects such as process, strategies, and tools of engineering changes expressed in a literature review, a case study was done on a major automotive original equipment manufacturer (OEM) to assess the perceived quality of its part engineering change management process and supporting system through its employees’ eyes. A combination of 12 interviews lasting 12 h and 46 written surveys was used to capture the views of participants from all major functions found at the research and development (R&D) headquarters of the OEM: Purchasing, Production, Development, and one group consisting of all other functions (“Other”). Statistical analysis was performed to identify statistically significant differences between employee perceptions of an engineering change management system among different departments, amount of use, and years of use. It was found that statistically significant differences exist in terms of understanding the usability of the system between different departments and also between different years of experience.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82598677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Stanley, Ashley Ciero, W. Timms, Rodward L. Hewlin
In recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.
近年来,由于无法制造光学清晰的解剖血管模型来真实地复制动脉血管的复杂形态,并提供高分辨率的流动示踪颗粒的流动图像,使用颗粒图像测速法(PIV)对病变动脉模拟血管的血流分析受到了阻碍。本文的目的是介绍一种新的方法来生产光学清晰的3d打印刚性解剖动脉血管模型,该模型适用于PIV分析,使用普通的3d喷墨打印工艺(使用Formlabs Form 2 3d打印机)和透明树脂(RS-F2-GPCL-04)。通过将工作流体的折射率(IOR)与原始的透明树脂材料相匹配,并以45度的打印方向打印零件,可以产生清晰的解剖模型,从而可以清晰地显示流动示踪剂颗粒,从而产生用于PIV分析的高分辨率流动图像。然而,由于打印支撑材料的数量增加,45度的打印方向增加了后处理的需要。在后处理过程中,零件必须经过几个步骤的湿砂处理,并用Novus塑料抛光3步系统完成表面处理,以达到产生高分辨率流动图像所需的最终表面处理。在这项工作中产生的模拟动脉血管模型是根据CTA扫描数据开发的3d打印病变颈动脉分叉动脉。将开发的模拟动脉血管模型安装在一个复杂的瞬态流动环中,进行PIV分析,以评估模型内的流动剖面和模型的清晰度。计算流体动力学(CFD)模拟了相同的颈动脉分叉动脉几何形状,并将结果作为PIV结果的基准比较。在这项工作中获得的结果显示了使用开发的方法开发用于实验PIV分析的3d打印解剖血管模型的良好前景。详细描述了清晰解剖模型的制作方法、PIV结果和CFD结果。
{"title":"A 3-D Printed Optically Clear Rigid Diseased Carotid Bifurcation Arterial Mock Vessel Model for Particle Image Velocimetry Analysis in Pulsatile Flow","authors":"Nicholas Stanley, Ashley Ciero, W. Timms, Rodward L. Hewlin","doi":"10.1115/1.4056639","DOIUrl":"https://doi.org/10.1115/1.4056639","url":null,"abstract":"\u0000 In recent years, blood flow analyses of diseased arterial mock vessels using particle image velocimetry (PIV) have been hampered by the inability to fabricate optically clear anatomical vessel models that realistically replicate the complex morphology of arterial vessels and provide highly resolved flow images of flow tracer particles. The aim of this paper is to introduce a novel approach for producing optically clear 3-D printed rigid anatomical arterial vessel models that are suitable for PIV analysis using a common 3-D inkjet printing process (using a Formlabs Form 2 3-D printer) and stock clear resin (RS-F2-GPCL-04). By matching the index of refraction (IOR) of the working fluid to the stock clear resin material, and by printing the part in a 45-deg print orientation, a clear anatomical model that allows clear visualization of flow tracer particles can be produced which yields highly resolved flow images for PIV analyses. However, a 45-deg print orientation increases the need for post-processing due to an increased amount of printed support material. During post-processing, the part must be wet sanded in several steps and surface finished with Novus Plastic Polish 3 Step System to achieve the final surface finish needed to yield high-resolution flow images. The mock arterial vessel model produced in this work is a 3-D printed diseased carotid bifurcation artery developed from CTA scan data. A PIV analysis was conducted on the developed mock arterial vessel model installed in a complex transient flow loop to assess the flow profiles within the model and the clarity of the model. A computational fluid dynamics (CFD) simulation was conducted on the same carotid bifurcation arterial geometry, and the results were used as a benchmark comparison for PIV results. The results obtained in this work show excellent promise for using the developed approach for developing 3-D printed anatomical vessel models for experimental PIV analyses. The fabrication methodology of the clear anatomical models, PIV results, and CFD results is described in detail.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80588259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Casey J. Troxler, Thomas B Freeman, Rafael M. Rodriguez, S. Boetcher
Accurate modeling of melting and solidification processes is important to many engineering applications. The research presented in this article is part of an ongoing effort to document the melting behavior of lauric acid in a 50 mm by 120 mm rectangular container with an isothermal side—an experiment commonly used to validate numerical models. This article presents new experimental data of melting occurring at 135 deg and 180 deg inclines for isothermal wall temperatures of 60∘C and 70∘C. The data were processed to show the melt interface development and the melt fraction as a function of time. Furthermore, numerical simulations using the enthalpy-porosity method of the 135 deg incline were also conducted. In the numerical simulations, the mushy zone constant was parametrically varied. Different density approaches commonly found in the literature (e.g., density as a function of temperature or Boussinesq approximation) were utilized and examined. It was found that the choice of density method had a significant effect on the results. Implications of potential modeling choices unique to the enthalpy-porosity method are discussed related to the validation of models.
{"title":"Experimental and Numerical Investigation of Lauric Acid Melting at Suboptimal Inclines","authors":"Casey J. Troxler, Thomas B Freeman, Rafael M. Rodriguez, S. Boetcher","doi":"10.1115/1.4056348","DOIUrl":"https://doi.org/10.1115/1.4056348","url":null,"abstract":"\u0000 Accurate modeling of melting and solidification processes is important to many engineering applications. The research presented in this article is part of an ongoing effort to document the melting behavior of lauric acid in a 50 mm by 120 mm rectangular container with an isothermal side—an experiment commonly used to validate numerical models. This article presents new experimental data of melting occurring at 135 deg and 180 deg inclines for isothermal wall temperatures of 60∘C and 70∘C. The data were processed to show the melt interface development and the melt fraction as a function of time. Furthermore, numerical simulations using the enthalpy-porosity method of the 135 deg incline were also conducted. In the numerical simulations, the mushy zone constant was parametrically varied. Different density approaches commonly found in the literature (e.g., density as a function of temperature or Boussinesq approximation) were utilized and examined. It was found that the choice of density method had a significant effect on the results. Implications of potential modeling choices unique to the enthalpy-porosity method are discussed related to the validation of models.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90634471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Some serious errors exist in the above paper.
摘要本文存在一些严重的错误。
{"title":"Comment on the Paper “Duel Solutions in Hiemenz Flow of an Electro-Conductive Viscous Nanofluid Containing Elliptic Single-/Multi-Wall Carbon Nanotubes With Magnetic Induction Effects” (Ferdows, M., Tahia, T., Bég, O. A., and Bég, T. A., 2022, ASME Open J. Eng., <b>1</b>, p. 011040)","authors":"Asterios Pantokratoras","doi":"10.1115/1.4063085","DOIUrl":"https://doi.org/10.1115/1.4063085","url":null,"abstract":"Abstract Some serious errors exist in the above paper.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135793340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}