Amjed Hassan, M. Mahmoud, Abdulaziz Al-Majed, A. Al-Nakhli, M. Bataweel, Salaheldin Elktatany
{"title":"Permanent Removal of Condensate Banking in Tight Gas Reservoirs Using Thermochemicals","authors":"Amjed Hassan, M. Mahmoud, Abdulaziz Al-Majed, A. Al-Nakhli, M. Bataweel, Salaheldin Elktatany","doi":"10.2118/193609-MS","DOIUrl":null,"url":null,"abstract":"\n Condensate banking is a common problem in tight gas reservoirs because it diminishes the gas relative permeability and reduces the gas production rate significantly. CO2 injection is a common and very effective solution for condensate removal in tight gas reservoirs. The problem with CO2 injection is that it is a temporary solution and has to be repeated frequently in the field in addition to the supply limitations of CO2 in some areas. Also, the infrastructure required at the surface to handle CO2 injection makes it expensive to apply CO2 injection for condensate removal.\n In this paper, a new permanent technique is introduced to remove the condensate by using a thermochemical technique. Two chemicals will be used to generate in-situ CO2, nitrogen, steam, heat, and pressure. The reaction of the two chemicals downhole can be triggered either by the reservoir temperature, or a chemical activator. Two chemicals will start reacting and produce all the mentioned reaction products after 24 hrs. of mixing and injection. Also, the reaction can be triggered by a chemical activator and this will shorten the time of reaction. Coreflooding experiments were carried out using actual condensate samples from one of the gas fields. Tight sandstone cores of 0.9 mD permeability were used.\n The results of this study showed that, the thermochemical reaction products removed the condensate and reduced its viscosity due to the high temperature and the generated gases. The novelty in this paper is the creation of micro-fractures in the tight rock sample due to the in-situ generation of heat and pressure from the thermochemical reaction. These micro-fractures reduced the capillary forces that hold the condensate and enhanced its relative permeability. The creation of micro-fractures and in turn the reduction of the capillary forces can be considered as permanent condensate removal.","PeriodicalId":10983,"journal":{"name":"Day 1 Mon, April 08, 2019","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193609-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Condensate banking is a common problem in tight gas reservoirs because it diminishes the gas relative permeability and reduces the gas production rate significantly. CO2 injection is a common and very effective solution for condensate removal in tight gas reservoirs. The problem with CO2 injection is that it is a temporary solution and has to be repeated frequently in the field in addition to the supply limitations of CO2 in some areas. Also, the infrastructure required at the surface to handle CO2 injection makes it expensive to apply CO2 injection for condensate removal.
In this paper, a new permanent technique is introduced to remove the condensate by using a thermochemical technique. Two chemicals will be used to generate in-situ CO2, nitrogen, steam, heat, and pressure. The reaction of the two chemicals downhole can be triggered either by the reservoir temperature, or a chemical activator. Two chemicals will start reacting and produce all the mentioned reaction products after 24 hrs. of mixing and injection. Also, the reaction can be triggered by a chemical activator and this will shorten the time of reaction. Coreflooding experiments were carried out using actual condensate samples from one of the gas fields. Tight sandstone cores of 0.9 mD permeability were used.
The results of this study showed that, the thermochemical reaction products removed the condensate and reduced its viscosity due to the high temperature and the generated gases. The novelty in this paper is the creation of micro-fractures in the tight rock sample due to the in-situ generation of heat and pressure from the thermochemical reaction. These micro-fractures reduced the capillary forces that hold the condensate and enhanced its relative permeability. The creation of micro-fractures and in turn the reduction of the capillary forces can be considered as permanent condensate removal.