Inferring highly corroded buried pipeline locations through saturated soil resistivity information

IF 4.8 Q2 ENERGY & FUELS Journal of Pipeline Science and Engineering Pub Date : 2022-03-01 DOI:10.1016/j.jpse.2021.12.001
Ravin N Deo, Rukshan Azoor, Guoyang Fu, Benjamin Shannon, Jayantha Kodikara
{"title":"Inferring highly corroded buried pipeline locations through saturated soil resistivity information","authors":"Ravin N Deo,&nbsp;Rukshan Azoor,&nbsp;Guoyang Fu,&nbsp;Benjamin Shannon,&nbsp;Jayantha Kodikara","doi":"10.1016/j.jpse.2021.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Inspection and assessment of ageing buried metallic infrastructure such as pipelines can be costly, especially when soil sampling programs are involved to evaluate large networks and pipe health conditions. In order to reduce these costs through assessment prioritisation at infrastructure locations that are scientifically inferred to be under highly corroded state, advancements in current approaches are necessary. In this study we have investigated the utility of soil resistivity as an index for buried and ageing pipe health status through numerical and field case studies. Numerical study showed that the monotonous relationship between soil resistivity and maximum pit depth that is often considered in literature as linear is actually non-linear. Field study involving in-situ wall thickness measurements of 3 separate water distribution mains (each &gt; 1.5 km in length) at selected excavated locations were compared with the saturated soil resistivity (<em>ρ</em><sub>sat</sub>) acquired a-prior. The <em>ρ</em><sub>sat</sub> was found to be highly correlated to the maximum corrosion pit depths observed in-situ. This correspondence is argued to exist provided the saturated soil resistivity displays statistical uniformity along the pipe and the pipes are not under submerged conditions. Locations on the pipe where <em>ρ</em><sub>sat</sub> &lt; 15 Ω m were found to have corroded relatively more than other locations; in one instant a leaking pipe due to excessive corrosion was also observed. A practical indirect assessment framework was proposed that can be utilised immediately in professional practice.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"2 1","pages":"Pages 60-70"},"PeriodicalIF":4.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667143321000767/pdfft?md5=ac3fe8afa6b67e085c307f99bf7e61b4&pid=1-s2.0-S2667143321000767-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143321000767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

Inspection and assessment of ageing buried metallic infrastructure such as pipelines can be costly, especially when soil sampling programs are involved to evaluate large networks and pipe health conditions. In order to reduce these costs through assessment prioritisation at infrastructure locations that are scientifically inferred to be under highly corroded state, advancements in current approaches are necessary. In this study we have investigated the utility of soil resistivity as an index for buried and ageing pipe health status through numerical and field case studies. Numerical study showed that the monotonous relationship between soil resistivity and maximum pit depth that is often considered in literature as linear is actually non-linear. Field study involving in-situ wall thickness measurements of 3 separate water distribution mains (each > 1.5 km in length) at selected excavated locations were compared with the saturated soil resistivity (ρsat) acquired a-prior. The ρsat was found to be highly correlated to the maximum corrosion pit depths observed in-situ. This correspondence is argued to exist provided the saturated soil resistivity displays statistical uniformity along the pipe and the pipes are not under submerged conditions. Locations on the pipe where ρsat < 15 Ω m were found to have corroded relatively more than other locations; in one instant a leaking pipe due to excessive corrosion was also observed. A practical indirect assessment framework was proposed that can be utilised immediately in professional practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用饱和土电阻率信息推断高腐蚀埋地管道位置
对老化的地下金属基础设施(如管道)进行检查和评估是非常昂贵的,尤其是在涉及土壤采样计划以评估大型网络和管道健康状况时。为了通过对科学推断为高度腐蚀状态的基础设施位置进行优先评估来降低这些成本,有必要改进当前的方法。在这项研究中,我们通过数值和现场案例研究,研究了土壤电阻率作为埋藏和老化管道健康状况指标的效用。数值研究表明,土壤电阻率与最大坑深之间的单调关系在文献中通常被认为是线性的,实际上是非线性的。实地研究涉及3个独立的配水管道的现场壁厚测量(每个>选取开挖位置1.5 km长度段的饱和土电阻率(ρsat)进行对比。ρsat与现场观察到的最大腐蚀坑深度高度相关。假设饱和土电阻率沿管道呈统计均匀性,且管道不处于淹没条件下,这种对应关系就存在。管道上ρsat <15处Ω m处发现锈蚀相对较多;在一个瞬间,由于过度腐蚀的管道泄漏也被观察到。提出了一种实用的间接评估框架,可立即用于专业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Editorial board Study on scour stripping of oil-wax gels in pipes Development of a sectionalizing method for simulation of large-scale complicated natural gas pipeline networks Corrosion protection characteristics of doped magnetite layers on carbon steel surfaces in aqueous CO2 environments Editorial board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1