Model based clustering for 3D directional features: Application to depth image analysis

A. Hasnat, O. Alata, A. Trémeau
{"title":"Model based clustering for 3D directional features: Application to depth image analysis","authors":"A. Hasnat, O. Alata, A. Trémeau","doi":"10.1109/ICIP.2014.7025765","DOIUrl":null,"url":null,"abstract":"Model Based Clustering (MBC) is a method that estimates a model for the data and produces probabilistic clustering. In this paper, we propose a novel MBC method to cluster three dimensional directional features. We assume that the features are generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. The core elements of our proposed method are: (a) generate a set of vMF Mixture Models (vMFMM) and (b) select the optimal model using a parsimony based approach with information criteria. We empirically validate our proposed method by applying it on simulated data. Next, we apply it to cluster image normals in order to perform depth image analysis.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model Based Clustering (MBC) is a method that estimates a model for the data and produces probabilistic clustering. In this paper, we propose a novel MBC method to cluster three dimensional directional features. We assume that the features are generated from a finite statistical mixture model based on the von Mises-Fisher (vMF) distribution. The core elements of our proposed method are: (a) generate a set of vMF Mixture Models (vMFMM) and (b) select the optimal model using a parsimony based approach with information criteria. We empirically validate our proposed method by applying it on simulated data. Next, we apply it to cluster image normals in order to perform depth image analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的三维方向特征聚类:在深度图像分析中的应用
基于模型的聚类(MBC)是一种估计数据模型并产生概率聚类的方法。在本文中,我们提出了一种新的MBC方法来聚类三维方向特征。我们假设这些特征是由基于von Mises-Fisher (vMF)分布的有限统计混合模型产生的。我们提出的方法的核心要素是:(a)生成一组vMF混合模型(vMFMM); (b)使用基于信息标准的简约方法选择最优模型。通过对模拟数据的实验验证了本文提出的方法。接下来,我们将其应用于聚类图像法线以进行深度图像分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1