{"title":"Respiratory Protective Textile Devices Based on Immobilized Biocidal Enzymes and Peptides: A Spirit of Innovation","authors":"","doi":"10.47485/2767-5416.1014","DOIUrl":null,"url":null,"abstract":"The global Covid-19 pandemic and cross-contamination in hospitals has led to a serious public health problem and severe economic consequences [1]. As the Coronavirus panic continues to spread across the world, engineers and scientists are working hard to find new ways of developing novel respiratory protective devices. In the context of this prevention, the creation of antimicrobial textiles for medical applications (masks, gloves, surgical gowns …) appears an urgent necessity to fight against infections caused by pathogenic viruses and bacteria. Antimicrobial agents are molecules with the ability to kill microorganisms (biocides) or prevent their growth (biostatics). There are many antimicrobial molecules that can be used for the functionalization of textiles, the most widely used in the field of textiles are triclosan and its derivatives, zeolites (silver and copper or silver and zinc aluminosilicates), quaternary ammoniums, mineral powders (silver and copper), phenols, polyphenols, chitosan, silver ions, antimicrobial peptides and lytic enzymes [2-5].","PeriodicalId":94090,"journal":{"name":"Journal of medical clinical case reports","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical clinical case reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47485/2767-5416.1014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The global Covid-19 pandemic and cross-contamination in hospitals has led to a serious public health problem and severe economic consequences [1]. As the Coronavirus panic continues to spread across the world, engineers and scientists are working hard to find new ways of developing novel respiratory protective devices. In the context of this prevention, the creation of antimicrobial textiles for medical applications (masks, gloves, surgical gowns …) appears an urgent necessity to fight against infections caused by pathogenic viruses and bacteria. Antimicrobial agents are molecules with the ability to kill microorganisms (biocides) or prevent their growth (biostatics). There are many antimicrobial molecules that can be used for the functionalization of textiles, the most widely used in the field of textiles are triclosan and its derivatives, zeolites (silver and copper or silver and zinc aluminosilicates), quaternary ammoniums, mineral powders (silver and copper), phenols, polyphenols, chitosan, silver ions, antimicrobial peptides and lytic enzymes [2-5].