Building low-dimensional damping predictors of the power system modes of oscillation

O. Antoine, J. Maun, J. Warichet
{"title":"Building low-dimensional damping predictors of the power system modes of oscillation","authors":"O. Antoine, J. Maun, J. Warichet","doi":"10.1109/TDC.2012.6281571","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for building damping predictors of the power system modes. This method is able to accurately predict the damping of each mode of oscillation and also to locate the variables, monitored by operators, having the biggest influence on the mode dynamics. The method consists of three steps. First, a database of historical data is set up for each potentially dangerous mode of oscillation. This database contains as inputs a set of operating conditions and as output the corresponding mode damping ratio. Afterwards, the input-output pairs “operating conditions - mode damping ratio” are used to build an ensemble of regression trees whose structure is analyzed to identify the most relevant variables. In the last step, a second tree-based regressor is run by considering only as inputs these most relevant variables in order to have a low-dimensional predictor. The usefulness of the predictors to avoid poorly damped operating points is then presented. The approach is tested on a 16-machine power system and gives good results.","PeriodicalId":19873,"journal":{"name":"PES T&D 2012","volume":"31 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PES T&D 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2012.6281571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method for building damping predictors of the power system modes. This method is able to accurately predict the damping of each mode of oscillation and also to locate the variables, monitored by operators, having the biggest influence on the mode dynamics. The method consists of three steps. First, a database of historical data is set up for each potentially dangerous mode of oscillation. This database contains as inputs a set of operating conditions and as output the corresponding mode damping ratio. Afterwards, the input-output pairs “operating conditions - mode damping ratio” are used to build an ensemble of regression trees whose structure is analyzed to identify the most relevant variables. In the last step, a second tree-based regressor is run by considering only as inputs these most relevant variables in order to have a low-dimensional predictor. The usefulness of the predictors to avoid poorly damped operating points is then presented. The approach is tested on a 16-machine power system and gives good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立电力系统振荡模态的低维阻尼预测器
本文提出了一种建立电力系统模式阻尼预测器的方法。该方法能够准确地预测各振型的阻尼,并定位出由算子监测的对振型动力学影响最大的变量。该方法包括三个步骤。首先,为每一种潜在危险的振荡模式建立一个历史数据数据库。该数据库包含作为输入的一组操作条件和作为输出的相应模式阻尼比。然后,使用输入输出对“工况-模态阻尼比”构建回归树集合,分析回归树的结构以识别最相关的变量。在最后一步中,第二个基于树的回归器通过只考虑这些最相关的变量作为输入来运行,以便有一个低维预测器。预测器的有用性,以避免不良阻尼工作点,然后提出。该方法在16机电力系统上进行了测试,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage reduction field trials on distributions circuits Wind generators and series-compensated AC transmission lines Analysis of catastrophic events using statistical outlier methods An innovative approach to smart automation testing at National Grid A PSCAD/EMTDC model of a marine vehicle propulsion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1