Florian Angehrn, Oliver Wang, Yagiz Aksoy, M. Gross, A. Smolic
{"title":"MasterCam FVV: Robust registration of multiview sports video to a static high-resolution master camera for free viewpoint video","authors":"Florian Angehrn, Oliver Wang, Yagiz Aksoy, M. Gross, A. Smolic","doi":"10.1109/ICIP.2014.7025705","DOIUrl":null,"url":null,"abstract":"Free viewpoint video enables interactive viewpoint selection in real world scenes, which is attractive for many applications such as sports visualization. Multi-camera registration is one of the difficult tasks in such systems. We introduce the concept of a static high resolution master camera for improved long-term multiview alignment. All broadcast cameras are aligned to a common reference. Our approach builds on frame-to-frame alignment, extended into a recursive long-term estimation process, which is shown to be accurate, robust and stable over long sequences.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"80 1","pages":"3474-3478"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Free viewpoint video enables interactive viewpoint selection in real world scenes, which is attractive for many applications such as sports visualization. Multi-camera registration is one of the difficult tasks in such systems. We introduce the concept of a static high resolution master camera for improved long-term multiview alignment. All broadcast cameras are aligned to a common reference. Our approach builds on frame-to-frame alignment, extended into a recursive long-term estimation process, which is shown to be accurate, robust and stable over long sequences.