Training and Evaluation of Deep Policies using Reinforcement Learning and Generative Models

Ali Ghadirzadeh, Petra Poklukar, Karol Arndt, Chelsea Finn, V. Kyrki, D. Kragic, Marten Bjorkman
{"title":"Training and Evaluation of Deep Policies using Reinforcement Learning and Generative Models","authors":"Ali Ghadirzadeh, Petra Poklukar, Karol Arndt, Chelsea Finn, V. Kyrki, D. Kragic, Marten Bjorkman","doi":"10.48550/arXiv.2204.08573","DOIUrl":null,"url":null,"abstract":"We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"34 1","pages":"174:1-174:37"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强化学习和生成模型的深度策略训练和评估
我们提出了一个数据高效的框架来解决序列决策问题,该框架利用强化学习(RL)和潜在变量生成模型的结合。该框架称为GenRL,通过引入一个动作潜在变量来训练深度策略,这样前馈策略搜索可以分为两个部分:(i)训练一个子策略,该子策略在给定系统状态的情况下输出动作潜在变量的分布,以及(ii)生成模型的无监督训练,该模型输出一系列以潜在动作变量为条件的运动动作。GenRL能够安全探索并缓解数据效率低下的问题,因为它利用了关于有效运动动作序列的先验知识。此外,我们提供了一组用于评估生成模型的措施,这样我们就能够在物理机器人的实际训练之前预测RL策略训练的性能。我们通过实验确定了生成模型的特征,这些特征对两个机器人任务:冰球射击和篮球投掷的最终策略训练性能影响最大。此外,我们通过经验证明,与两种最先进的强化学习方法相比,GenRL是唯一能够安全有效地解决机器人任务的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1