A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning

Wei-Fang Sun, Cheng-Kuang Lee, S. See, Chun-Yi Lee
{"title":"A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning","authors":"Wei-Fang Sun, Cheng-Kuang Lee, S. See, Chun-Yi Lee","doi":"10.48550/arXiv.2306.02430","DOIUrl":null,"url":null,"abstract":"In fully cooperative multi-agent reinforcement learning (MARL) settings, environments are highly stochastic due to the partial observability of each agent and the continuously changing policies of other agents. To address the above issues, we proposed a unified framework, called DFAC, for integrating distributional RL with value function factorization methods. This framework generalizes expected value function factorization methods to enable the factorization of return distributions. To validate DFAC, we first demonstrate its ability to factorize the value functions of a simple matrix game with stochastic rewards. Then, we perform experiments on all Super Hard maps of the StarCraft Multi-Agent Challenge and six self-designed Ultra Hard maps, showing that DFAC is able to outperform a number of baselines.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"7 1","pages":"220:1-220:32"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.02430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In fully cooperative multi-agent reinforcement learning (MARL) settings, environments are highly stochastic due to the partial observability of each agent and the continuously changing policies of other agents. To address the above issues, we proposed a unified framework, called DFAC, for integrating distributional RL with value function factorization methods. This framework generalizes expected value function factorization methods to enable the factorization of return distributions. To validate DFAC, we first demonstrate its ability to factorize the value functions of a simple matrix game with stochastic rewards. Then, we perform experiments on all Super Hard maps of the StarCraft Multi-Agent Challenge and six self-designed Ultra Hard maps, showing that DFAC is able to outperform a number of baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多智能体强化学习中分布值函数分解的统一框架
在完全合作的多智能体强化学习(MARL)设置中,由于每个智能体的部分可观察性和其他智能体不断变化的策略,环境是高度随机的。为了解决上述问题,我们提出了一个统一的框架,称为DFAC,用于集成分布式RL与价值函数分解方法。该框架推广了期望值函数分解方法,以实现收益分布的分解。为了验证DFAC,我们首先展示了它分解具有随机奖励的简单矩阵博弈的价值函数的能力。然后,我们在《星际争霸》Multi-Agent Challenge的所有超硬地图和6张自己设计的超硬地图上进行了实验,结果表明DFAC能够超越许多基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1