Comment: A brief survey of the current state of play for Bayesian computation in data science at Big-Data scale

D. Draper, Alexander Terenin
{"title":"Comment: A brief survey of the current state of play for Bayesian computation in data science at Big-Data scale","authors":"D. Draper, Alexander Terenin","doi":"10.1214/17-BJPS365B","DOIUrl":null,"url":null,"abstract":"We wish to contribute to the discussion of \"Comparing Consensus Monte Carlo Strategies for Distributed Bayesian Computation\" by offering our views on the current best methods for Bayesian computation, both at big-data scale and with smaller data sets, as summarized in Table 1. This table is certainly an over-simplification of a highly complicated area of research in constant (present and likely future) flux, but we believe that constructing summaries of this type is worthwhile despite their drawbacks, if only to facilitate further discussion.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-BJPS365B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We wish to contribute to the discussion of "Comparing Consensus Monte Carlo Strategies for Distributed Bayesian Computation" by offering our views on the current best methods for Bayesian computation, both at big-data scale and with smaller data sets, as summarized in Table 1. This table is certainly an over-simplification of a highly complicated area of research in constant (present and likely future) flux, but we believe that constructing summaries of this type is worthwhile despite their drawbacks, if only to facilitate further discussion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评论:简要介绍大数据规模下贝叶斯计算在数据科学中的现状
我们希望对“比较分布式贝叶斯计算的共识蒙特卡罗策略”的讨论做出贡献,通过提供我们对当前贝叶斯计算的最佳方法的看法,无论是在大数据规模还是在较小的数据集上,如表1所示。这个表格当然是对一个高度复杂的研究领域的过度简化,这个领域在不断变化(现在和可能的未来),但我们认为,尽管有缺点,但构建这种类型的摘要是值得的,如果只是为了促进进一步的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1