Abdul-Reda Assiri, S. Benham, S. Prichard, C. Benham
{"title":"Role of methylglyoxal as a transient receptor potential ankyrin 1 agonist in colon motility disturbances associated with diabetes","authors":"Abdul-Reda Assiri, S. Benham, S. Prichard, C. Benham","doi":"10.4103/JHS.JHS_118_16","DOIUrl":null,"url":null,"abstract":"Introduction: Evidence has been found to suggest that methylglyoxal (MG) plays a mediating role in diabetes-related gastrointestinal conditions, and a possible mechanism relating to these conditions could be revealed by determining MG as a transient receptor potential ankyrin 1 (TRPA1) channel agonist. Methods: Muscle strips from the distal colon of male Wistar rats were used, and organ bath was employed to gain insight into the impact of MG + TRPA1 antagonist (HC-030031). Results: Considerable rise of spontaneous contractions for longitudinal muscle strips subjected to pre-treatment with MG were observed. The potentiation of the contractile response of control longitudinal muscle strips to electric field stimulation (EFS) took place as a consequence of pre-treatment with 10 mM MG, and maximum response values displayed a rise from 2.16 g ± 0.323 to 3.64 g ± 0.421. 10 μM HC-030031 was observed to block the improvement of EFS responses by MG, and regarding circular muscle strips, a considerable decline in the maximum relaxation response was facilitated by 10 mM MG. Specifically, this was achieved at 20 Hz from 0.26 g ± 0.036 to 0.055 g ± 0.046. Conclusion: MG has been found to directly contract the distal colons of Wistar rats while enhancing the responses initiated as a result of carbachol and EFS. After blockading the impacts using HC-030031, evidence was found to suggest that the mediation of the impacts takes place through the activation of the TRPA1 channel, which occurs from the excretion of excitatory neurotransmitters. The findings also implicate MG in the blocking of inhibitory neurotransmission.","PeriodicalId":31033,"journal":{"name":"Journal of Health Specialties","volume":"38 1","pages":"148 - 154"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Health Specialties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JHS.JHS_118_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Evidence has been found to suggest that methylglyoxal (MG) plays a mediating role in diabetes-related gastrointestinal conditions, and a possible mechanism relating to these conditions could be revealed by determining MG as a transient receptor potential ankyrin 1 (TRPA1) channel agonist. Methods: Muscle strips from the distal colon of male Wistar rats were used, and organ bath was employed to gain insight into the impact of MG + TRPA1 antagonist (HC-030031). Results: Considerable rise of spontaneous contractions for longitudinal muscle strips subjected to pre-treatment with MG were observed. The potentiation of the contractile response of control longitudinal muscle strips to electric field stimulation (EFS) took place as a consequence of pre-treatment with 10 mM MG, and maximum response values displayed a rise from 2.16 g ± 0.323 to 3.64 g ± 0.421. 10 μM HC-030031 was observed to block the improvement of EFS responses by MG, and regarding circular muscle strips, a considerable decline in the maximum relaxation response was facilitated by 10 mM MG. Specifically, this was achieved at 20 Hz from 0.26 g ± 0.036 to 0.055 g ± 0.046. Conclusion: MG has been found to directly contract the distal colons of Wistar rats while enhancing the responses initiated as a result of carbachol and EFS. After blockading the impacts using HC-030031, evidence was found to suggest that the mediation of the impacts takes place through the activation of the TRPA1 channel, which occurs from the excretion of excitatory neurotransmitters. The findings also implicate MG in the blocking of inhibitory neurotransmission.