Estimation of Traffic Demand Corresponding to Observed Link Traffic Volume in Microscopic Simulation

K. Abe, H. Fujii, S. Yoshimura
{"title":"Estimation of Traffic Demand Corresponding to Observed Link Traffic Volume in Microscopic Simulation","authors":"K. Abe, H. Fujii, S. Yoshimura","doi":"10.1109/ITSC.2019.8917275","DOIUrl":null,"url":null,"abstract":"Traffic simulation is utilized to solve traffic-related problems. Microscopic simulations can describe individual vehicles and thus reproduce detailed vehicle behavior. To use a simulator, traffic demand should be estimated in the form of an origin-destination (OD) matrix. The simulator and OD estimation models must be consistent. In addition, microscopic models are sensitive to congestion, and can thus easily produce unexpected congestion. Here, we propose a simulator-embedded OD estimation method that uses congestion sensing. We minimize the residual between the observed and simulated link traffic volumes with some constraints regarding congestion. If a link is judged to be congested, we use resistance in a constraint in the optimization problem, which is determined by the number of the stuck vehicles at each link. Use of the resistance prevents excessively large traffic demand for that link. This congestion sensing mitigates unrealistic congestion in the estimated traffic demand.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"96 1","pages":"2220-2225"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic simulation is utilized to solve traffic-related problems. Microscopic simulations can describe individual vehicles and thus reproduce detailed vehicle behavior. To use a simulator, traffic demand should be estimated in the form of an origin-destination (OD) matrix. The simulator and OD estimation models must be consistent. In addition, microscopic models are sensitive to congestion, and can thus easily produce unexpected congestion. Here, we propose a simulator-embedded OD estimation method that uses congestion sensing. We minimize the residual between the observed and simulated link traffic volumes with some constraints regarding congestion. If a link is judged to be congested, we use resistance in a constraint in the optimization problem, which is determined by the number of the stuck vehicles at each link. Use of the resistance prevents excessively large traffic demand for that link. This congestion sensing mitigates unrealistic congestion in the estimated traffic demand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微观仿真中观测到的链路交通量对应的交通需求估计
交通模拟是用来解决交通相关问题的。微观模拟可以描述单个车辆,从而重现详细的车辆行为。要使用模拟器,交通需求应该以起点-目的地(OD)矩阵的形式进行估计。模拟器和OD估计模型必须一致。此外,微观模型对拥塞很敏感,容易产生意外的拥塞。在这里,我们提出了一种使用拥塞感知的模拟器嵌入式OD估计方法。我们最小化观察到的和模拟的链路交通量之间的残差与一些关于拥塞的约束。如果判断某个路段拥堵,我们在优化问题的约束中使用阻力,阻力由每个路段的拥堵车辆数量决定。使用阻力可以防止对该链路的流量需求过大。这种拥塞感知减轻了估计交通需求中不现实的拥塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1