COVIDKG.ORG - a Web-scale COVID-19 Interactive, Trustworthy Knowledge Graph, Constructed and Interrogated for Bias using Deep-Learning

Bhimesh Kandibedala, A. Pyayt, Nick Piraino, Chris Caballero, M. Gubanov
{"title":"COVIDKG.ORG - a Web-scale COVID-19 Interactive, Trustworthy Knowledge Graph, Constructed and Interrogated for Bias using Deep-Learning","authors":"Bhimesh Kandibedala, A. Pyayt, Nick Piraino, Chris Caballero, M. Gubanov","doi":"10.48786/edbt.2023.63","DOIUrl":null,"url":null,"abstract":"We describe a Web-scale interactive Knowledge Graph (KG) , populated with trustworthy information from the latest published medical findings on COVID-19. Currently existing, socially maintained KGs, such as YAGO or DBPedia or more specialized medical ontologies, such as NCBI, Virus-, and COVID-19-related are getting stale very quickly, lack any latest COVID-19 medical findings - most importantly lack any scalable mechanism to keep them up to date. Here we describe COVIDKG.ORG - an online, interactive, trust-worthy COVID-19 Web-scale Knowledge Graph and several advanced search-engines. Its content is extracted and updated from the latest medical research. Because of that it does not suffer from any bias or misinformation, often dominating public information sources.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"188 1","pages":"757-764"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a Web-scale interactive Knowledge Graph (KG) , populated with trustworthy information from the latest published medical findings on COVID-19. Currently existing, socially maintained KGs, such as YAGO or DBPedia or more specialized medical ontologies, such as NCBI, Virus-, and COVID-19-related are getting stale very quickly, lack any latest COVID-19 medical findings - most importantly lack any scalable mechanism to keep them up to date. Here we describe COVIDKG.ORG - an online, interactive, trust-worthy COVID-19 Web-scale Knowledge Graph and several advanced search-engines. Its content is extracted and updated from the latest medical research. Because of that it does not suffer from any bias or misinformation, often dominating public information sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVIDKG。ORG -一个网络规模的COVID-19互动,可信赖的知识图谱,使用深度学习构建和询问偏见
我们描述了一个网络规模的交互式知识图(KG),其中填充了来自最新发表的COVID-19医学发现的可靠信息。目前现有的、由社会维护的知识库,如YAGO或DBPedia,或更专业的医学本体,如NCBI、病毒和COVID-19相关的知识库,正在迅速过时,缺乏任何最新的COVID-19医学发现——最重要的是缺乏任何可扩展的机制来保持它们的最新状态。这里我们来描述一下covid - kg。ORG——一个在线的、互动的、值得信赖的COVID-19网络规模知识图谱和几个先进的搜索引擎。它的内容是从最新的医学研究中提取和更新的。正因为如此,它不会受到任何偏见或错误信息的影响,经常占据公共信息来源的主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1