Computing Generic Abstractions from Application Datasets

Nelly Barret, I. Manolescu, P. Upadhyay
{"title":"Computing Generic Abstractions from Application Datasets","authors":"Nelly Barret, I. Manolescu, P. Upadhyay","doi":"10.48786/edbt.2024.09","DOIUrl":null,"url":null,"abstract":"Digital data plays a central role in sciences, journalism, environment, digital humanities, etc. Open Data sharing initiatives lead to many large, interesting datasets being shared online. Some of these are RDF graphs, but other formats like CSV, relational, property graphs, JSON or XML documents are also frequent. Practitioners need to understand a dataset to decide whether it is suited to their needs. Datasets may come with a schema and/or may be summarized, however the first is not always provided and the latter is often too technical for non-IT users. To overcome these limitations, we present an end-to-end dataset abstraction approach, which ( 𝑖 ) applies on any (semi)structured data model; ( 𝑖𝑖 ) computes a description meant for human users, in the form of an Entity-Relationship diagram; ( 𝑖𝑖𝑖 ) integrates Information Extraction and data profiling to classify dataset entities among a large set of intelligible categories. We implemented our approach in a system called Abstra, and detail its performance on various datasets.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"14 1","pages":"94-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2024.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Digital data plays a central role in sciences, journalism, environment, digital humanities, etc. Open Data sharing initiatives lead to many large, interesting datasets being shared online. Some of these are RDF graphs, but other formats like CSV, relational, property graphs, JSON or XML documents are also frequent. Practitioners need to understand a dataset to decide whether it is suited to their needs. Datasets may come with a schema and/or may be summarized, however the first is not always provided and the latter is often too technical for non-IT users. To overcome these limitations, we present an end-to-end dataset abstraction approach, which ( 𝑖 ) applies on any (semi)structured data model; ( 𝑖𝑖 ) computes a description meant for human users, in the form of an Entity-Relationship diagram; ( 𝑖𝑖𝑖 ) integrates Information Extraction and data profiling to classify dataset entities among a large set of intelligible categories. We implemented our approach in a system called Abstra, and detail its performance on various datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从应用程序数据集计算通用抽象
数字数据在科学、新闻、环境、数字人文等领域发挥着核心作用。开放数据共享计划导致许多大型、有趣的数据集在网上共享。其中一些是RDF图,但其他格式,如CSV、关系图、属性图、JSON或XML文档也很常见。从业者需要了解数据集,以决定它是否适合他们的需求。数据集可能带有模式和/或汇总,但是前者并不总是提供,而后者对于非it用户来说往往过于技术性。为了克服这些限制,我们提出了一种端到端数据抽象方法,该方法适用于任何(半)结构化数据模型;(s)以实体关系图的形式计算用于人类用户的描述;将信息抽取和数据分析集成在一起,将数据集实体划分为大量可理解的类别。我们在一个名为Abstra的系统中实现了我们的方法,并详细说明了它在各种数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1