Mining accurate message formats for service APIs

Md. Arafat Hossain, Steven Versteeg, Jun Han, M. A. Kabir, Jiaojiao Jiang, Jean-Guy Schneider
{"title":"Mining accurate message formats for service APIs","authors":"Md. Arafat Hossain, Steven Versteeg, Jun Han, M. A. Kabir, Jiaojiao Jiang, Jean-Guy Schneider","doi":"10.1109/SANER.2018.8330215","DOIUrl":null,"url":null,"abstract":"APIs play a significant role in the sharing, utilization and integration of information and service assets for enterprises, delivering significant business value. However, the documentation of service APIs can often be incomplete, ambiguous, or even non-existent, hindering API-based application development efforts. In this paper, we introduce an approach to automatically mine the fine-grained message formats required in defining the APIs of services and applications from their interaction traces, without assuming any prior knowledge. Our approach includes three major steps with corresponding techniques: (1) classifying the interaction messages of a service into clusters corresponding to message types, (2) identifying the keywords of messages in each cluster, and (3) extracting the format of each message type. We have applied our approach to network traces collected from four real services which used the following application protocols: REST, SOAP, LDAP and SIP. The results show that our approach achieves much greater accuracy in extracting message formats for service APIs than current state-of-art approaches.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"17 1","pages":"266-276"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

APIs play a significant role in the sharing, utilization and integration of information and service assets for enterprises, delivering significant business value. However, the documentation of service APIs can often be incomplete, ambiguous, or even non-existent, hindering API-based application development efforts. In this paper, we introduce an approach to automatically mine the fine-grained message formats required in defining the APIs of services and applications from their interaction traces, without assuming any prior knowledge. Our approach includes three major steps with corresponding techniques: (1) classifying the interaction messages of a service into clusters corresponding to message types, (2) identifying the keywords of messages in each cluster, and (3) extracting the format of each message type. We have applied our approach to network traces collected from four real services which used the following application protocols: REST, SOAP, LDAP and SIP. The results show that our approach achieves much greater accuracy in extracting message formats for service APIs than current state-of-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为服务api挖掘准确的消息格式
api在企业信息和服务资产的共享、利用和集成方面发挥着重要作用,提供了重要的业务价值。然而,服务api的文档常常是不完整的、模棱两可的,甚至是不存在的,这阻碍了基于api的应用程序开发工作。在本文中,我们介绍了一种方法,可以在不假设任何先验知识的情况下,根据服务和应用程序的交互跟踪,自动挖掘定义服务和应用程序api所需的细粒度消息格式。我们的方法包括三个主要步骤和相应的技术:(1)将服务的交互消息分类到与消息类型相对应的集群中;(2)识别每个集群中的消息关键字;(3)提取每种消息类型的格式。我们已经将我们的方法应用于从使用以下应用协议的四个实际服务收集的网络跟踪:REST、SOAP、LDAP和SIP。结果表明,我们的方法在为服务api提取消息格式方面比当前最先进的方法实现了更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1