The Statechart Workbench: Enabling scalable software event log analysis using process mining

M. Leemans, Wil M.P. van der Aalst, M. Brand
{"title":"The Statechart Workbench: Enabling scalable software event log analysis using process mining","authors":"M. Leemans, Wil M.P. van der Aalst, M. Brand","doi":"10.1109/SANER.2018.8330248","DOIUrl":null,"url":null,"abstract":"To understand and maintain the behavior of a (legacy) software system, one can observe and study the system's behavior by analyzing event data. For model-driven reverse engineering and analysis of system behavior, operation and usage based on software event data, we need a combination of advanced algorithms and techniques. In this paper, we present the Statechart Workbench: a novel software behavior exploration tool. Our tool provides a rich and mature integration of advanced (academic) techniques for the analysis of behavior, performance (timings), frequency (usage), conformance and reliability in the context of various formal models. The accompanied Eclipse plugin allows the user to interactively link all the results from the Statechart Workbench back to the source code of the system and enables users to get started right away with their own software. The work can be positioned in-between reverse engineering and process mining. Implementations, documentation, and a screen-cast (https://youtu.be/xR4XfU3E5mk) of the proposed approach are available, and a user study demonstrates the novelty and usefulness of the tool.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"90 1","pages":"502-506"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

To understand and maintain the behavior of a (legacy) software system, one can observe and study the system's behavior by analyzing event data. For model-driven reverse engineering and analysis of system behavior, operation and usage based on software event data, we need a combination of advanced algorithms and techniques. In this paper, we present the Statechart Workbench: a novel software behavior exploration tool. Our tool provides a rich and mature integration of advanced (academic) techniques for the analysis of behavior, performance (timings), frequency (usage), conformance and reliability in the context of various formal models. The accompanied Eclipse plugin allows the user to interactively link all the results from the Statechart Workbench back to the source code of the system and enables users to get started right away with their own software. The work can be positioned in-between reverse engineering and process mining. Implementations, documentation, and a screen-cast (https://youtu.be/xR4XfU3E5mk) of the proposed approach are available, and a user study demonstrates the novelty and usefulness of the tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statechart工作台:使用流程挖掘支持可伸缩的软件事件日志分析
为了理解和维护(遗留)软件系统的行为,可以通过分析事件数据来观察和研究系统的行为。对于基于软件事件数据的模型驱动的逆向工程和系统行为、操作和使用的分析,我们需要先进的算法和技术的结合。在本文中,我们提出了Statechart Workbench:一种新颖的软件行为探索工具。我们的工具提供了丰富而成熟的高级(学术)技术集成,用于在各种正式模型的上下文中分析行为、性能(计时)、频率(使用)、一致性和可靠性。附带的Eclipse插件允许用户交互地将来自Statechart Workbench的所有结果链接回系统的源代码,并使用户能够立即开始使用自己的软件。这项工作可以定位在逆向工程和过程挖掘之间。所建议的方法的实现、文档和屏幕播放(https://youtu.be/xR4XfU3E5mk)都是可用的,用户研究演示了该工具的新颖性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1