O. Llopis, G. Bailly, Alexis Bougaud, Arnaud Fernandez
{"title":"Experimental Investigations on Lasers FM and AM Noise","authors":"O. Llopis, G. Bailly, Alexis Bougaud, Arnaud Fernandez","doi":"10.1109/IFCS-ISAF41089.2020.9234819","DOIUrl":null,"url":null,"abstract":"Different 1550 nm fibered lasers are compared versus their performances in terms of frequency (FM) noise and amplitude (AM) noise. The noise spectral density is spread over six to height decades for the FM noise and three to four decades for the AM noise, depending on the frequency offset. The lasers featuring the best FM noise performance are generally the worst versus the AM noise performance, although some compromises can be found.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"224 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Different 1550 nm fibered lasers are compared versus their performances in terms of frequency (FM) noise and amplitude (AM) noise. The noise spectral density is spread over six to height decades for the FM noise and three to four decades for the AM noise, depending on the frequency offset. The lasers featuring the best FM noise performance are generally the worst versus the AM noise performance, although some compromises can be found.