E. Lund, Jeffrey L. Johnson, W. M. Hlaing Oo, M. Scarpulla
{"title":"Investigating sputtered Cu2Si1−xSnxS3 [CSTS] for earth abundant thin film photovoltaics","authors":"E. Lund, Jeffrey L. Johnson, W. M. Hlaing Oo, M. Scarpulla","doi":"10.1109/PVSC.2010.5616634","DOIUrl":null,"url":null,"abstract":"This study investigates the synthesis of chalcopyrite Cu2Si1−xSnxS3 (CSTS) thin films for photovoltaic solar cell absorber layers. Preliminary results indicate that layered sputtering of Cu, Sn, and Si followed by annealing in a sulfur atmosphere at 500°C does not provide adequate mixing or sulfur incorporation. Annealing/sulfurizing a homogeneous co-sputtered film of Cu, Sn, and S lead to CSTS formation, although low sulfur incorporation and undesired copper sulfide phase formation resolved. Sputtering from sulfide targets may lead to formation of CSTS.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"33 1","pages":"001948-001950"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5616634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study investigates the synthesis of chalcopyrite Cu2Si1−xSnxS3 (CSTS) thin films for photovoltaic solar cell absorber layers. Preliminary results indicate that layered sputtering of Cu, Sn, and Si followed by annealing in a sulfur atmosphere at 500°C does not provide adequate mixing or sulfur incorporation. Annealing/sulfurizing a homogeneous co-sputtered film of Cu, Sn, and S lead to CSTS formation, although low sulfur incorporation and undesired copper sulfide phase formation resolved. Sputtering from sulfide targets may lead to formation of CSTS.