{"title":"Optimal control of supervisors balancing individual and joint responsibilities","authors":"Zhuoting Yu, S. Andradóttir, H. Ayhan","doi":"10.1017/s0269964823000013","DOIUrl":null,"url":null,"abstract":"\n We consider a two-stage service system with two types of servers, namely subordinates who perform the first-stage service and supervisors who have their own responsibilities in addition to collaborating with the subordinates on the second-stage service. Rewards are earned when first- or second-stage service is completed and when supervisors finish one of their own responsibilities. Costs are incurred when impatient customers abandon without completing the second-stage service. Our problem is to determine how the supervisors should distribute their time between their joint work with the subordinates and their own responsibilities. Under the assumptions that service times at both stages are exponentially distributed and that the customers waiting for second-stage service abandon after an exponential amount of time, we prove that one of two policies will maximize the long-run average profit. Namely, it is optimal for supervisors to start collaborating with subordinates either when subordinates can no longer serve new customers or as soon as there is a customer ready for second-stage service. Furthermore, we show that the optimality condition is a simple threshold on the system parameters. We conclude by proving that pooling supervisors (and their associated subordinates) improves system performance, but with limited returns as more supervisors are pooled.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a two-stage service system with two types of servers, namely subordinates who perform the first-stage service and supervisors who have their own responsibilities in addition to collaborating with the subordinates on the second-stage service. Rewards are earned when first- or second-stage service is completed and when supervisors finish one of their own responsibilities. Costs are incurred when impatient customers abandon without completing the second-stage service. Our problem is to determine how the supervisors should distribute their time between their joint work with the subordinates and their own responsibilities. Under the assumptions that service times at both stages are exponentially distributed and that the customers waiting for second-stage service abandon after an exponential amount of time, we prove that one of two policies will maximize the long-run average profit. Namely, it is optimal for supervisors to start collaborating with subordinates either when subordinates can no longer serve new customers or as soon as there is a customer ready for second-stage service. Furthermore, we show that the optimality condition is a simple threshold on the system parameters. We conclude by proving that pooling supervisors (and their associated subordinates) improves system performance, but with limited returns as more supervisors are pooled.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.