Exact Simulation of Variance Gamma-Related OU Processes: Application to the Pricing of Energy Derivatives

P. Sabino
{"title":"Exact Simulation of Variance Gamma-Related OU Processes: Application to the Pricing of Energy Derivatives","authors":"P. Sabino","doi":"10.1080/1350486X.2020.1813040","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study we use a three-step procedure that relates the self-decomposability of the stationary law of a generalized Ornstein-Uhlenbeck process to the transition law of such processes. Based on this procedure and the results of Qu, Dassios, and Zhao (2019), we derive the exact simulation, without numerical inversion, of the skeleton of a Variance Gamma and of a symmetric Variance Gamma driven Ornstein-Uhlenbeck process. Extensive numerical experiments are reported to demonstrate the accuracy and efficiency of our algorithms. These results are instrumental to simulate the spot price dynamics in energy markets and to price Asian options and gas storages by Monte Carlo simulations in a framework similar to the one discussed in Cummins, Kiely and Murphy (2017, 2018).","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"155 1","pages":"207 - 227"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2020.1813040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

ABSTRACT In this study we use a three-step procedure that relates the self-decomposability of the stationary law of a generalized Ornstein-Uhlenbeck process to the transition law of such processes. Based on this procedure and the results of Qu, Dassios, and Zhao (2019), we derive the exact simulation, without numerical inversion, of the skeleton of a Variance Gamma and of a symmetric Variance Gamma driven Ornstein-Uhlenbeck process. Extensive numerical experiments are reported to demonstrate the accuracy and efficiency of our algorithms. These results are instrumental to simulate the spot price dynamics in energy markets and to price Asian options and gas storages by Monte Carlo simulations in a framework similar to the one discussed in Cummins, Kiely and Murphy (2017, 2018).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方差相关OU过程的精确模拟:在能源衍生品定价中的应用
在本研究中,我们使用了一个三步程序,将广义Ornstein-Uhlenbeck过程的平稳律的自分解性与该过程的过渡律联系起来。基于这一过程和Qu、Dassios和Zhao(2019)的结果,我们推导了方差伽玛和对称方差伽玛驱动的Ornstein-Uhlenbeck过程的骨架的精确模拟,而不需要数值反演。大量的数值实验证明了我们的算法的准确性和效率。这些结果有助于模拟能源市场的现货价格动态,并通过蒙特卡洛模拟在类似于康明斯,Kiely和墨菲(2017,2018)中讨论的框架中对亚洲期权和天然气储存进行定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1