Attentional Neural Fields for Crowd Counting

Anran Zhang, Lei Yue, Jiayi Shen, Fan Zhu, Xiantong Zhen, Xianbin Cao, Ling Shao
{"title":"Attentional Neural Fields for Crowd Counting","authors":"Anran Zhang, Lei Yue, Jiayi Shen, Fan Zhu, Xiantong Zhen, Xianbin Cao, Ling Shao","doi":"10.1109/ICCV.2019.00581","DOIUrl":null,"url":null,"abstract":"Crowd counting has recently generated huge popularity in computer vision, and is extremely challenging due to the huge scale variations of objects. In this paper, we propose the Attentional Neural Field (ANF) for crowd counting via density estimation. Within the encoder-decoder network, we introduce conditional random fields (CRFs) to aggregate multi-scale features, which can build more informative representations. To better model pair-wise potentials in CRFs, we incorperate non-local attention mechanism implemented as inter- and intra-layer attentions to expand the receptive field to the entire image respectively within the same layer and across different layers, which captures long-range dependencies to conquer huge scale variations. The CRFs coupled with the attention mechanism are seamlessly integrated into the encoder-decoder network, establishing an ANF that can be optimized end-to-end by back propagation. We conduct extensive experiments on four public datasets, including ShanghaiTech, WorldEXPO 10, UCF-CC-50 and UCF-QNRF. The results show that our ANF achieves high counting performance, surpassing most previous methods.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"15 1","pages":"5713-5722"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

Crowd counting has recently generated huge popularity in computer vision, and is extremely challenging due to the huge scale variations of objects. In this paper, we propose the Attentional Neural Field (ANF) for crowd counting via density estimation. Within the encoder-decoder network, we introduce conditional random fields (CRFs) to aggregate multi-scale features, which can build more informative representations. To better model pair-wise potentials in CRFs, we incorperate non-local attention mechanism implemented as inter- and intra-layer attentions to expand the receptive field to the entire image respectively within the same layer and across different layers, which captures long-range dependencies to conquer huge scale variations. The CRFs coupled with the attention mechanism are seamlessly integrated into the encoder-decoder network, establishing an ANF that can be optimized end-to-end by back propagation. We conduct extensive experiments on four public datasets, including ShanghaiTech, WorldEXPO 10, UCF-CC-50 and UCF-QNRF. The results show that our ANF achieves high counting performance, surpassing most previous methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人群计数的注意神经场
人群计数最近在计算机视觉中产生了巨大的普及,并且由于物体的巨大规模变化而极具挑战性。在本文中,我们提出了通过密度估计进行人群计数的注意神经场(attention Neural Field, ANF)。在编码器-解码器网络中,我们引入条件随机场(CRFs)来聚合多尺度特征,从而可以构建更多的信息表示。为了更好地模拟CRFs中的成对电位,我们将非局部注意机制作为层间和层内注意实现,将感受野分别扩展到同一层内和不同层之间的整个图像,从而捕获远程依赖关系以克服巨大的尺度变化。将crf与注意机制无缝集成到编码器-解码器网络中,建立一个可以通过反向传播进行端到端优化的ANF。我们在ShanghaiTech、world dexpo 10、UCF-CC-50和UCF-QNRF四个公共数据集上进行了广泛的实验。结果表明,我们的ANF达到了很高的计数性能,超过了大多数以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1